Skip to main content
Log in

Relationship between spatial organization and biological function, analyzed using gene ontology and chromosome conformation capture of human and fission yeast genomes

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Cells regulate functionally related genes cis- and trans-contacts in order to perform specific biological roles. To understand the cryptic spatial genomic contexts underlying these biological functions, we analyzed the gene association data from the gene ontology (GO) database and the genomic spatial organization data obtained by analysis of chromosome conformation capture (3C)-based data from the Sequence Read Archive, where GO and 3C-based data were used to measure functional similarity and spatial proximity, respectively, between genomic loci. In the human genome and the fission yeast genome, we observed that correlation between the two measures was statistically significant on a genome-wide scale. Specifically, it is also confirmed that the genomic spatial architecture is affected by functional similarity of genes by showing better correlation of functional similarities with spatial distances estimated by contact frequencies than those estimated by genomic distances for cis-contacts. Furthermore, we analyzed distances between the genomic segments sharing the same GO term using the two-sample t test, found that the genomic segments identified by various GO terms are spatially located closer than the average distance over statistically-valid contacts, and provided a list of the GO terms. The results suggested that genomic loci with similar biological functions are situated in close proximity to each other in the nuclear space by aggregating functionally related genes in a short spatial range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beissbarth T, Speed TP (2004) GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 20:1464–1465

    Article  CAS  PubMed  Google Scholar 

  • Chagoyen M, Carmona-Saez P, Gil C, Carazo JM, Pascual-Montano A (2006) A literature-based similarity metric for biological processes. BMC Bioinform 7:363

    Article  Google Scholar 

  • Chang CW, Cheng WC, Chen CR, Shu WY, Tsai ML, Huang CL, Hsu IC (2011) Identification of human housekeeping genes and tissue-selective genes by microarray meta-analysis. PLoS ONE 6:e22859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  CAS  PubMed  Google Scholar 

  • Diament A, Pinter RY, Tuller T (2014) Three-dimensional eukaryotic genomic organization is strongly correlated with codon usage expression and function. Nat Commun 5:5876

    Article  CAS  PubMed  Google Scholar 

  • Dice LR (1945) Measure of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, Noble WS (2010) A three-dimensional model of the yeast genome. Nature 465:363–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ethier SD, Miura H, Dostie J (2012) Discovering genome regulation with 3C and 3C-related technologies. Biochim Biophys Acta 1819:401–410

    Article  CAS  PubMed  Google Scholar 

  • Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447:413–417

    Article  CAS  PubMed  Google Scholar 

  • Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462:58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141

    CAS  PubMed  Google Scholar 

  • Gondor A, Ohlsson R (2009) Chromosome crosstalk in three dimensions. Nature 461:212–217

    Article  PubMed  Google Scholar 

  • Hahn S, Kim D (2013) Physical origin of the contact frequency in chromosome conformation capture data. Biophys J 105:1786–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn S, Kim D (2015) Identifying and reducing systematic errors in chromosome conformation capture data. PLoS ONE 10:e0146007

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsiao LL, Dangond F, Yoshida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, Clark KE, Haverty P (2001) A compendium of gene expression in normal human tissues. Physiol Genom 7:97–104

    Article  CAS  Google Scholar 

  • Hu M, Deng K, Selvaraj S, Qin Z, Ren B, Liu JS (2012) HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics 28:3131–3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, Dekker J, Mirny LA (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9:999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janga SC, Collado-Vides J, Babu MM (2008) Transcriptional regulation constrains the organization of genes on eukaryotic chromosomes. Proc Natl Acad Sci USA 105:15761–15766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  CAS  PubMed  Google Scholar 

  • Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L (2012) Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat Biotechnol 30:90–98

    Article  CAS  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatri P, Bhavsar P, Bawa G, Draghici S (2004) Onto-Tools: an ensemble of web-accessible, ontology-based tools for the functional design and interpretation of high-throughput gene expression experiments. Nucleic Acids Res 32:W449–W456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse K, Sewitz S, Babu MM (2013) A complex network framework for unbiased statistical analyses of DNA–DNA contact maps. Nucleic Acids Res 41:701–710

    Article  CAS  PubMed  Google Scholar 

  • Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39:D19–D21

    Article  CAS  PubMed  Google Scholar 

  • Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148:84–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Dong X, Fan H, Wang C, Ding G, Li Y (2014) The 3DGD: a database of genome 3D structure. Bioinformatics 30:1640–1642

    Article  PubMed  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B (2004) GOToolBox: functional analysis of gene datasets based on gene ontology. Genome Biol 5:R101

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin P, McGovern A, Orozco G, Duffus K, Yarwood A, Schoenfelder S, Cooper NJ, Barton A, Wallace C, Fraser P (2015) Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat Commun 6:10069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell MJ (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33:D284–D288

    Article  CAS  PubMed  Google Scholar 

  • Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64

    Article  CAS  PubMed  Google Scholar 

  • Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA (2012) Circuitry and dynamics of human transcription factor regulatory networks. Cell 150:1274–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36:1065–1071

    Article  CAS  PubMed  Google Scholar 

  • Ragoczy T, Bender MA, Telling A, Byron R, Groudine M (2006) The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 20:1447–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rippe K (2001) Making contacts on a nucleic acid polymer. Trends Biochem Sci 26:733–740

    Article  CAS  PubMed  Google Scholar 

  • Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148:458–472

    Article  CAS  PubMed  Google Scholar 

  • Solovei I, Kreysing M, Lanctot C, Kosem S, Peichl L, Cremer T, Guck J, Joffe B (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137:356–368

    Article  CAS  PubMed  Google Scholar 

  • Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA (2005) Interchromosomal associations between alternatively expressed loci. Nature 435:637–645

    Article  CAS  PubMed  Google Scholar 

  • Tanizawa H, Iwasaki O, Tanaka A, Capizzi JR, Wickramasinghe P, Lee M, Fu Z, Noma K (2010) Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res 38:8164–8177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tark-Dame M, van Driel R, Heermann DW (2011) Chromatin folding–from biology to polymer models and back. J Cell Sci 124:839–845

    Article  CAS  PubMed  Google Scholar 

  • Vernimmen D, De Gobbi M, Sloane-Stanley JA, Wood WG, Higgs DR (2007) Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J 26:2041–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457:854–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M (2000) Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genom 2:143–147

    CAS  Google Scholar 

  • Wood V, Harris MA, McDowall MD, Rutherford K, Vaughan BW, Staines DM, Aslett M, Lock A, Bahler J, Kersey PJ (2012) PomBase: a comprehensive online resource for fission yeast. Nucleic Acids Res 40:D695–D699

    Article  CAS  PubMed  Google Scholar 

  • Yaffe E, Tanay A (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 43:1059–1065

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wong CH, Birnbaum RY, Li G, Favaro R, Ngan CY, Lim J, Tai E, Poh HM, Wong E (2013) Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504:306–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, He F, Song S, Wang J, Yu J (2008) How many human genes can be defined as housekeeping with current expression data? BMC Genom 9:172

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Stem Cell Research Program (grant no. 2012M3A9B4027957), the Korea Healthcare technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (grant no. A092006), the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (grant no. NRF-2010-0012649), and the National Research Foundation of Korea grant funded by the Korea Government (MEST) (grant no. 2009-0086964).

Authors’ contributions

Study design: SH, DK. Analyses of data: SH. Writing manuscript: SH, DK. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsup Kim.

Ethics declarations

Conflict of interest

Seungsoo Hahn declares that they have no conflict of interest. Dongsup Kim declares that they have no conflict of interest.

Ethical standards

This study comply with the current laws of the country in which they were performed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 377 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahn, S., Kim, D. Relationship between spatial organization and biological function, analyzed using gene ontology and chromosome conformation capture of human and fission yeast genomes. Genes Genom 38, 693–705 (2016). https://doi.org/10.1007/s13258-016-0413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0413-7

Keywords

Navigation