Skip to main content
Log in

DNA methylation changes in extracellular remodeling pathway genes during the transformation of human mesenchymal stem cells

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Extracellular matrix (ECM) molecules are essential structural components that exhibit important functional roles in the control of key cellular events, including cell adhesion, migration, proliferation, differentiation, and survival. The ECM remodeling pathway is also important for tumorigenesis and the metastatic progression of cancer. In this study, we determined the methylation pattern of nineteen ECM genes in colon cancer cell lines and demonstrated that these genes were frequently hypermethylated in primary colon tissues. Upon extracting gene expression profile data of the mouse epithelium and mesenchymal compartments, we found that several ECM genes (CD109, EVL, FBN2, FLNC, IGFBP3, MMP2, and LAMA1) were highly expressed in the mesenchymal compartment. These results were confirmed via reverse transcription polymerase chain reaction analysis. Moreover, we demonstrated the correlation between transcriptional silencing and the promoter hypermethylation of LAMA1, FBN2, and IGFBP3 during the transformation of the mesenchymal stem cell model system using key genetic alterations that develop during human malignance. Interestingly, MMP2, IGFBP3, and LAMA1 mRNA levels were significantly decreased during the transformation. In terms of transcriptional silencing by promoter DNA hypermethylation, the lack of LAMA1 mRNA expression was associated with its promoter hypermethylation in the last step of transformation, which develops to malignancies. Overall, our data suggest that ECM alterations by hypermethylated genes may contribute to carcinogenesis through the silencing of ECM pathway genes by epigenetic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bateman JF, Boot-Handford RP, Lamande SR (2009) Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet 10:173–183

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    Article  CAS  PubMed  Google Scholar 

  • Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5:899–904

    Article  CAS  PubMed  Google Scholar 

  • Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, Sevillano M, Palomo-Ponce S, Tauriello DVF, Byrom D et al (2015) Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 47:320–329

    Article  CAS  PubMed  Google Scholar 

  • Cammarota F, Laukkanen MO (2016) Mesenchymal stem/stromal cells in stromal evolution and cancer progression. Stem Cells Int 4824573:1–10

    Article  Google Scholar 

  • Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285

    Article  CAS  PubMed  Google Scholar 

  • Daley WP, Peters SB, Larsen M (2008) Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 121:255–264

    Article  CAS  PubMed  Google Scholar 

  • Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3:285–296

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  PubMed  Google Scholar 

  • Ferry RJ Jr, Cerri RW, Cohen P (1999) Insulin-like growth factor binding proteins: new proteins, new functions. Horm Res Paediatr 51:53–67

    Article  CAS  Google Scholar 

  • Funes JM, Quintero M, Henderson S, Martinez D, Qureshi U, Westwood C, Clements MO, Bourboulia D, Pedley RB, Moncada S et al (2007) Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc Nat Acad Sci 104:6223–6228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400:464–468

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isella C, Terrasi A, Bellomo SE, Petti C, Galatola G, Muratore A, Mellano A, Senetta R, Cassenti A, Sonetto C et al (2015) Stromal contribution to the colorectal cancer transcriptome. Nat Genet 47:312–319

    Article  CAS  PubMed  Google Scholar 

  • Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R (2009) Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 61:198–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163–167

    Article  CAS  PubMed  Google Scholar 

  • Kibriya MG, Raza M, Jasmine F, Roy S, Paul-Brutus R, Rahaman R, Dodsworth C, Rakibuz-Zaman M, Kamal M, Ahsan H (2011) A genome-wide DNA methylation study in colorectal carcinoma. BMC Med Genom 4:50

    Article  CAS  Google Scholar 

  • Kim JG, Kim TO, Bae JH, Shim JW, Kang MJ, Yang K, Ting AH, Yi JM (2014) Epigenetically regulated MIR941 and MIR1247 target gastric cancer cell growth and migration. Epigenetics 9:1018–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Madison BB, Zacharias W, Kolterud A, States D, Gumucio DL (2007) Deconvoluting the intestine: molecular evidence for a major role of the mesenchyme in the modulation of signaling cross talk. Physiol Genom 29:290–301

    Article  CAS  Google Scholar 

  • Liu R, Wei S, Chen J, Xu S (2014) Mesenchymal stem cells in lung cancer tumor microenvironment: their biological properties, influence on tumor growth and therapeutic implications. Cancer Lett 353:145–152

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan A, Wang C, Schreiber SL (2005) Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Nat Acad Sci 102:5992–5997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  • Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW et al (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416:552–556

    Article  CAS  PubMed  Google Scholar 

  • van der Horst G, Bos L, van der Pluijm G (2012) Epithelial plasticity, cancer stem cells, and the tumor-supportive stroma in bladder carcinoma. Mol Cancer Res 10:995–1009

    Article  PubMed  Google Scholar 

  • Varley KE, Mitra RD (2010) Bisulfite patch PCR enables multiplexed sequencing of promoter methylation across cancer samples. Genome Res 20:1279–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virtanen I, Gullberg D, Rissanen J, Kivilaakso E, Kiviluoto T, Laitinen LA, Lehto VP, Ekblom P (2000) Laminin α1-chain shows a restricted distribution in epithelial basement membranes of fetal and adult human tissues. Exp Cell Res 257:298–309

    Article  CAS  PubMed  Google Scholar 

  • Vitale-Cross L, Amornphimoltham P, Fisher G, Molinolo AA, Gutkind JS (2004) Conditional expression of K-ras in an epithelial compartment that includes the stem cells is sufficient to promote squamous cell carcinogenesis. Cancer Res 64:8804–8807

    Article  CAS  PubMed  Google Scholar 

  • Wajed SA, Laird PW, DeMeester TR (2001) DNA methylation: an alternative pathway to cancer. Ann Surg 234:10–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi JM, Dhir M, Van Neste L, Downing SR, Jeschke J, Glöckner SC, de Freitas Calmon M, Hooker CM, Funes JM, Boshoff C et al (2011) Genomic and epigenomic integration identifies a prognostic signature in colon cancer. Clin Cancer Res 17:1535–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nita Ahuja or Joo Mi Yi.

Ethics declarations

Conflict of Interest

Authors disclosed no potential conflicts of interest.

Compliance with ethical standards

All samples or specimen derived from the Inje Biobank were obtained with informed consent under the institutional review board (IRB)-approved protocols (NON2016-002).

Additional information

Tae-Oh Kim and So-Hyun Park contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, TO., Park, SH., Kim, HS. et al. DNA methylation changes in extracellular remodeling pathway genes during the transformation of human mesenchymal stem cells. Genes Genom 38, 611–617 (2016). https://doi.org/10.1007/s13258-016-0402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0402-x

Keywords

Navigation