Genes & Genomics

, Volume 38, Issue 4, pp 389–395 | Cite as

Is there a relationship between PPARD T294C/PPARGC1A Gly482Ser variations and physical endurance performance in the Korean population?

  • Han-Jun Jin
  • In-Wook Hwang
  • Ki-Cheol Kim
  • Hyun-Ik Cho
  • Tae-Hwan Park
  • Yun-A Shin
  • Ho-Seong Lee
  • Ji-Hyun Hwang
  • Ah-Ram Kim
  • Kwang-Hee Lee
  • Ye-Eun Shin
  • Ji-Yeon Lee
  • Ji-Ae Kim
  • Eun-Ji Choi
  • Bo-Kyeong Kim
  • Hee-Seob Sim
  • Min-Seok Kim
  • Wook Kim
Research Article

Abstract

The peroxisome proliferator-activated receptor δ (PPARD) and peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A) genes recently have been suggested to have an association with athletic performance and physical endurance. These gene products are reported to be crucial components in training-induced muscle adaptation, since they are related with mRNA and/or protein activity in coordinated response to exercise. To assess the possible contribution of the PPARD T294C/PPARGC1A Gly482Ser polymorphism to differences in physical endurance, we performed a population-based study of 111 Korean athletes and 145 healthy controls based on their genotype distribution of the genes. The two loci were found to be not deviated from Hardy–Weinberg equilibrium. There were no differences in genotype distribution of PPARD T294C and PPARGC1A Gly482Ser between the athletic group and controls (p > 0.05). In contrast, we found a significant association between the PPARGC1A Gly482Ser polymorphism and the 20 m shuttle run activity (a measure of endurance performance) in the athletic group (p = 0.003). The result showed a remarkable increase in the numbers of shuttle run ratio from subjects with the PPARGC1A Gly/Gly genotype (85.29 ± 28.80) than those with the Gly/Ser (58.05 ± 32.76) and Ser/Ser (68.38 ± 30.47) genotypes. Thus, our data imply that the PPARGC1A Gly/Gly genotype may provide a beneficial effect on elite-level endurance status, although functional studies with larger sample sizes are necessary to elucidate these findings.

Keywords

Physical performance Association study PPARGC1A PPARD Endurance athlete status 

Notes

Acknowledgments

We are grateful to all volunteers for providing DNA samples. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2014S1A5B6037521). This work was also supported in part by DANKOOK ChemBio Specialization for Creative Korea-II (2015).

Compliance with ethical standards

Bioethical statements

The study was approved by the Ethics Committee and Institutional Review Board of Dankook University, Korea.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

13258_2015_380_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)
13258_2015_380_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 kb)

References

  1. Ahmetov II, Fedotovskaya ON (2012) Sports genomics: current state of knowledge and future directions. Cell Mol Exerc Physiol 1:e1CrossRefGoogle Scholar
  2. Akhmetov II, Astranenkova IV, Rogozkin VA (2007) Association of PPARD gene polymorphism with human physical performance. Mol Biol (Mosk) 41:852–857Google Scholar
  3. Alfred T, Ben-Shlomo Y, Cooper R, Hardy R, Cooper C, Deary IJ, Gunnell D, Harris SE, Kumari M, Martin RM, Moran CN, Pitsiladis YP, Ring SM, Sayer AA, Smith GD, Starr JM, Kuh D, Day IN, HALCyon Study (2011) ACTN3 genotype, athletic status, and life course physical capability: meta-analysis of the published literature and findings from nine studies. Hum Mutat 32:1008–1018CrossRefPubMedPubMedCentralGoogle Scholar
  4. Buxens A, Ruiz JR, Arteta D, Artieda M, Santiago C, González-Freire M, Martínez A, Tejedor D, Lao JI, Gómez-Gallego F, Lucia A (2011) Can we predict top-level sports performance in power vs endurance events? A genetic approach. Scand J Med Sci Sports 21:570–579CrossRefPubMedGoogle Scholar
  5. Cordain L, Latin RW, Behnke JJ (1986) The effects of an aerobic running program on bowel transit time. J Sports Med Phys Fitness 26:101–104PubMedGoogle Scholar
  6. Costill DL, Thomason H, Roberts E (1973) Fractional utilization of the aerobic capacity during distance running. Med Sci Sports 5:248–252PubMedGoogle Scholar
  7. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688PubMedGoogle Scholar
  8. Ek J, Andersen G, Urhammer SA, Gaede PH, Drivsholm T, Borch-Johnsen K, Hansen T, Pedersen O (2001) Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus. Diabetologia 44:2220–2226CrossRefPubMedGoogle Scholar
  9. Eynon N, Meckel Y, Alves AJ, Yamin C, Sagiv M, Goldhammer E, Sagiv M (2009) Is there an interaction between PPARD T294C and PPARGC1A Gly482Ser polymorphisms and human endurance performance? Exp Physiol 94:1147–1152CrossRefPubMedGoogle Scholar
  10. Eynon N, Meckel Y, Sagiv M, Yamin C, Amir R, Sagiv M, Goldhammer E, Duarte JA, Oliveira J (2010) Do PPARGC1A and PPARalpha polymorphisms influence sprint or endurance phenotypes? Scand J Med Sci Sports 20:e145–e150CrossRefPubMedGoogle Scholar
  11. Eynon N, Ruiz JR, Oliveira J, Duarte JA, Birk R, Lucia A (2011) Genes and elite athletes: a roadmap for future research. J Physiol 589:3063–3070CrossRefPubMedPubMedCentralGoogle Scholar
  12. Farrell PA, Wilmore JH, Coyle EF, Billing JE, Costill DL (1979) Plasma lactate accumulation and distance running performance. Med Sci Sports 11:338–344PubMedGoogle Scholar
  13. Fiuza-Luces C, Ruiz JR, Rodríguez-Romo G, Santiago C, Gómez-Gallego F, Yvert T, Cano-Nieto A, Garatachea N, Morán M, Lucia A (2011) Are ‘endurance’ alleles ‘survival’ alleles? Insights from the ACTN3 R577X polymorphism. PLoS One 6:e17558CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gonzalez-Freire M, Santiago C, Verde Z, Lao JI, Oiivan J, Gómez-Gallego F, Lucia A (2009) Unique among unique. Is it genetically determined? Br J Sports Med 43:307–309CrossRefPubMedGoogle Scholar
  15. Guilherme JPLF, Tritto ACC, North KN, Lancha Junior AH, Artioli GG (2014) Genetics and sport performance: current challenges and directions to the future. Rev Bras Educ Fis Esporte 28:177–193CrossRefGoogle Scholar
  16. Hara K, Tobe K, Okada T, Kadowaki H, Akanuma Y, Ito C, Kimura S, Kadowaki T (2002) A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type II diabetes. Diabetologia 45:740–743CrossRefPubMedGoogle Scholar
  17. He Z, Hu Y, Feng L, Bao D, Wang L, Li Y, Wang J, Liu G, Xi Y, Wen L, Lucia A (2008) Is there an association between PPARGC1A genotypes and endurance capacity in Chinese men? Scand J Med Sci Sports 18:195–204CrossRefPubMedGoogle Scholar
  18. Hong SS, Jin HJ (2013) Assessment of association of ACTN3 genetic polymorphism with Korean elite athletic performance. Genes Genom 35:617–621CrossRefGoogle Scholar
  19. Hong MS, Kim HK, Shin DH, Song DK, Ban JY, Kim BS, Chung JH (2008) Integrative study on PPARGC1A: hypothalamic expression of Ppargc1a in ob/ob mice and association between PPARGC1A and obesity in Korean population. Mol Cell Toxicol 4:318–322Google Scholar
  20. Lewis CM (2002) Genetic association studies: design, analysis and interpretation. Brief Bioinform 3:146–153CrossRefPubMedGoogle Scholar
  21. Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151CrossRefPubMedGoogle Scholar
  22. Lucia A, Gomez-Gallego F, Barroso I, Rabadán M, Bandrés F, San Juan AF, Chicharro JL, Ekelund U, Brage S, Earnest CP, Wareham NJ, Franks PW (2005) PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J Appl Physiol 99:344–348CrossRefPubMedGoogle Scholar
  23. MacArthur DG, North KN (2005) Genes and human elite athletic performance. Hum Genet 116:331–339CrossRefPubMedGoogle Scholar
  24. MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, Hook JW, Lemckert FA, Kee AJ, Edwards MR, Berman Y (2007) Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet 39:1261–1265CrossRefPubMedGoogle Scholar
  25. Maciejewska A, Sawczuk M, Cieszczyk P, Mozhayskaya IA, Ahmetov II (2012) The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J Sports Sci 30:101–113CrossRefPubMedGoogle Scholar
  26. Maciejewska-Karlowska A (2013) Polymorphic variants of the PPAR (peroxisome proliferator-activated receptor) genes: relevance for athletic performance. Trends Sport Sci 1:5–15Google Scholar
  27. Maciejewska-Karlowska A, Hanson ED, Sawczuk M, Cieszczyk P, Eynon N (2014) Genomic haplotype within the peroxisome proliferator-activated receptor delta (PPARD) gene is associated with elite athletic status. Scand J Med Sci Sports 24:e148–e155CrossRefPubMedGoogle Scholar
  28. Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S, North K (2001) Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Hum Mol Genet 10:1335–1346CrossRefPubMedGoogle Scholar
  29. Montgomery H, Marshall R, Hemingway H, Myerson S, Clarkson P, Dollery C, Hayward M, Holliman D, Jubb M (1998) Human gene for physical performance. Nature 393:221–222CrossRefPubMedGoogle Scholar
  30. Muller YL, Bogardus C, Beamer BA, Shuldiner AR, Baier LJ (2003) A functional variant in the peroxisome proliferator-activated receptor gamma2 promoter is associated with predictors of obesity and type 2 diabetes in Pima Indians. Diabetes 52:1864–1871CrossRefPubMedGoogle Scholar
  31. Nishida Y, Iyadomi M, Higaki Y, Tanaka H, Kondo Y, Otsubo H, Horita M, Hara M, Tanaka K (2015) Association between the PPARGC1A polymorphism and aerobic capacity in Japanese middle-aged men. Intern Med 54:359–366CrossRefPubMedGoogle Scholar
  32. North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH (1999) A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet 21:353–354CrossRefPubMedGoogle Scholar
  33. Ostrander EA, Huson HJ, Ostrander GK (2009) Genetics of athletic performance. Annu Rev Genom Hum Genet 10:407–429CrossRefGoogle Scholar
  34. Proia P, Bianco A, Schiera G, Saladino P, Contrò V, Caramazza G, Traina M, Grimaldi KA, Palma A, Paoli A (2014) PPARα gene variants as predicted performance-enhancing polymorphisms in professional Italian soccer players. Open Access J Sports Med 5:273–278PubMedPubMedCentralGoogle Scholar
  35. Ramsbottom R, Brewer J, Williams C (1988) A progressive shuttle run test to estimate maximal oxygen uptake. Br J Sports Med 22:141–144CrossRefPubMedPubMedCentralGoogle Scholar
  36. Romero R, Kuivaniemi H, Tromp G, Olson J (2002) The design, execution, and interpretation of genetic association studies to decipher complex diseases. Am J Obstet Gynecol 187:1299–1312CrossRefPubMedGoogle Scholar
  37. Rowell LB, Taylor HL, Wang Y, Carlson WS (1964) Saturation of arterial blood with oxyzen during maximal exercise. J Appl Physiol 19:284–286PubMedGoogle Scholar
  38. Shin HD, Park BL, Kim LH, Jung HS, Cho YM, Moon MK, Park YJ, Lee HK, Park KS (2004) Genetic polymorphisms in peroxisome proliferator-activated receptor delta associated with obesity. Diabetes 53:847–851CrossRefPubMedGoogle Scholar
  39. Skogsberg J, Kannisto K, Cassel TN, Hamsten A, Eriksson P, Ehrenborg E (2003) Evidence that peroxisome proliferator-activated receptor delta influences cholesterol metabolism in men. Arterioscler Thromb Vasc Biol 23:637–643CrossRefPubMedGoogle Scholar
  40. Stumvoll M, Fritsche A, t’Hart LM, Machann J, Thamer C, Tschritter O, Van Haeften TW, Jacob S, Dekker JM, Maassen JA, Machicao F, Schick F, Heine RJ, Häring H (2004) The Gly482Ser variant in the peroxisome proliferator-activated receptor gamma coactivator-1 is not associated with diabetes-related traits in non-diabetic German and Dutch populations. Exp Clin Endocrinol Diabetes 112:253–257CrossRefPubMedGoogle Scholar
  41. Suminaga R, Matsuo M, Takeshima Y, Nakamura H, Wada H (2000) Nonsense mutation of the alpha-actinin-3 gene is not associated with dystrophinopathy. Am J Med Genet 92:77–78CrossRefPubMedGoogle Scholar
  42. Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4:e72CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer-Science and Media 2015

Authors and Affiliations

  • Han-Jun Jin
    • 1
  • In-Wook Hwang
    • 1
  • Ki-Cheol Kim
    • 2
  • Hyun-Ik Cho
    • 3
  • Tae-Hwan Park
    • 3
  • Yun-A Shin
    • 4
  • Ho-Seong Lee
    • 4
  • Ji-Hyun Hwang
    • 4
  • Ah-Ram Kim
    • 4
  • Kwang-Hee Lee
    • 2
  • Ye-Eun Shin
    • 1
  • Ji-Yeon Lee
    • 1
  • Ji-Ae Kim
    • 2
  • Eun-Ji Choi
    • 2
  • Bo-Kyeong Kim
    • 2
  • Hee-Seob Sim
    • 2
  • Min-Seok Kim
    • 4
  • Wook Kim
    • 2
  1. 1.Department of Nanobiomedical ScienceDankook UniversityCheonanRepublic of Korea
  2. 2.Department of Biological SciencesDankook UniversityCheonanRepublic of Korea
  3. 3.Department of Sports ManagementDankook UniversityCheonanRepublic of Korea
  4. 4.Department of Kinesiology and Medical ScienceDankook UniversityCheonanRepublic of Korea

Personalised recommendations