Genes & Genomics

, Volume 38, Issue 2, pp 179–192 | Cite as

Identification of transposable element-mediated deletions in 27 Korean individuals based on whole genome sequencing data

  • Jungsu Ha
  • Wooseok Lee
  • Seyoung Mun
  • Yun-Ji Kim
  • Kyudong Han
Research Article


The human genome has various genomic structural variations such as insertion/deletions between human individuals. These structural variations have led to genomic fluidity and rearrangements in individuals and populations. To investigate Korean-specific structural genomic variations, we performed next generation sequencing with 30× mean coverage from 27 Korean individuals using illumina-HiSeq 2000 platform. We collected a total of 119 deletion loci as transposable element-mediated Korean-specific deletion (KSD) candidates. Of the 119 loci, 35 were filtered out due to computational overlapping regions. A total of 78 loci were validated by PCR amplification with 27 Korean individuals and 80 human individuals from four different populations. We confirmed deletion breakpoints of the 78 loci using Sanger sequencing. We also investigated different deletion mechanisms based on sequencing alignment analysis. We found at least one KSD locus in 80 human individual panel. It has not been previously reported in human genomes. Here, for the first time, we report transposable element-mediated KSD study based on whole genome sequencing data of 27 Korean.


Next generation sequencing Korean specific deletion Korean genome Transposable element 


Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests exists in this paper.

Informed consent

Written informed consent was obtained from all participants, and this research was approved by the institutional review boards of TheragenEtex Bio Institute.

Supplementary material

13258_2015_370_MOESM1_ESM.xlsx (15 kb)
Supplementary material 1 (XLSX 15 kb)
13258_2015_370_MOESM2_ESM.xlsx (23 kb)
Supplementary material 2 (XLSX 22 kb)
13258_2015_370_MOESM3_ESM.xlsx (56 kb)
Supplementary material 3 (XLSX 55 kb)


  1. Anderson KJ, Allen RL (2009) Regulation of T-cell immunity by leucocyte immunoglobulin-like receptors: innate immune receptors for self on antigen-presenting cells. Immunology 127:8–17PubMedCentralCrossRefPubMedGoogle Scholar
  2. Baker MD, Birmingham EC (2001) Evidence for biased holliday junction cleavage and mismatch repair directed by junction cuts during double-strand-break repair in mammalian cells. Mol Cell Biol 21:3425–3435PubMedCentralCrossRefPubMedGoogle Scholar
  3. Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–379CrossRefPubMedGoogle Scholar
  4. Belancio VP, Deininger PL, Roy-Engel AM (2009) LINE dancing in the human genome: transposable elements and disease. Genome Med 1:97PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bennett EA, Coleman LE, Tsui C, Pittard WS, Devine SE (2004) Natural genetic variation caused by transposable elements in humans. Genetics 168:933–951PubMedCentralCrossRefPubMedGoogle Scholar
  6. Boissinot S, Chevret P, Furano AV (2000) L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol 17:915–928CrossRefPubMedGoogle Scholar
  7. Burwinkel B, Kilimann MW (1998) Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease. J Mol Biol 277:513–517CrossRefPubMedGoogle Scholar
  8. Callinan PA, Batzer MA (2006) Retrotransposable elements and human disease. Genome Dyn 1:104–115CrossRefPubMedGoogle Scholar
  9. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP et al (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6:677–681PubMedCentralCrossRefPubMedGoogle Scholar
  10. Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703PubMedCentralCrossRefPubMedGoogle Scholar
  11. Deininger PL, Batzer MA (1999) Alu repeats and human disease. Mol Genet Metab 67:183–193CrossRefPubMedGoogle Scholar
  12. Dridi S (2012) Alu mobile elements: from junk DNA to genomic gems. Scientifica 2012:545328PubMedCentralCrossRefPubMedGoogle Scholar
  13. Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073CrossRefGoogle Scholar
  14. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65CrossRefGoogle Scholar
  15. Han JS (2010) Non-long terminal repeat (non-LTR) retrotransposons: mechanisms, recent developments, and unanswered questions. Mobile DNA 1:15PubMedCentralCrossRefPubMedGoogle Scholar
  16. Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA (2008) L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci USA 105:19366–19371PubMedCentralCrossRefPubMedGoogle Scholar
  17. Han K, Lee J, Meyer TJ, Wang J, Sen SK, Srikanta D, Liang P, Batzer MA (2007) Alu recombination-mediated structural deletions in the chimpanzee genome. PLoS Genet 3:1939–1949CrossRefPubMedGoogle Scholar
  18. Hedges DJ, Deininger PL (2007) Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res 616:46–59PubMedCentralCrossRefPubMedGoogle Scholar
  19. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696CrossRefPubMedGoogle Scholar
  20. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefPubMedGoogle Scholar
  21. Lee H-E, Eo J, Kim H-S (2014) Composition and evolutionary importance of transposable elements in humans and primates. Genes Genomics 37:135–140CrossRefGoogle Scholar
  22. Li L, Bray PF (1993) Homologous recombination among three intragene alu sequences causes an inversion-deletion resulting in the hereditary bleeding disorder glanzmann thrombasthenia. Am J Hum Genet 53:140–149PubMedCentralPubMedGoogle Scholar
  23. Li M, Wu Y, Chen G, Yang Y, Zhou D, Zhang Z, Zhang D, Chen Y, Lu Z, He L et al (2011) Deletion of the late cornified envelope genes LCE3C and LCE3B is associated with psoriasis in a Chinese population. J Invest Dermatol 131:1639–1643CrossRefPubMedGoogle Scholar
  24. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511CrossRefPubMedGoogle Scholar
  25. Matejcic M, Li D, Prescott NJ, Lewis CM, Mathew CG, Parker MI (2011) Association of a deletion of GSTT2B with an altered risk of oesophageal squamous cell carcinoma in a South African population: a case-control study. PLoS One 6:e29366PubMedCentralCrossRefPubMedGoogle Scholar
  26. Miller CA, Hampton O, Coarfa C, Milosavljevic A (2011) ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads. PLoS One 6:e16327PubMedCentralCrossRefPubMedGoogle Scholar
  27. Mills RE, Bennett EA, Iskow RC, Devine SE (2007) Which transposable elements are active in the human genome? Trends Genet 23:183–191CrossRefPubMedGoogle Scholar
  28. Mullaney JM, Mills RE, Pittard WS, Devine SE (2010) Small insertions and deletions (INDELs) in human genomes. Hum Mol Genet 19:R131–R136PubMedCentralCrossRefPubMedGoogle Scholar
  29. Munoz-Lopez M, Garcia-Perez JL (2010) DNA transposons: nature and applications in genomics. Curr Genomics 11:115–128PubMedCentralCrossRefPubMedGoogle Scholar
  30. Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538CrossRefPubMedGoogle Scholar
  31. Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299:1335–1344CrossRefPubMedGoogle Scholar
  32. Pousi B, Hautala T, Heikkinen J, Pajunen L, Kivirikko KI, Myllyla R (1994) Alu–Alu recombination results in a duplication of seven exons in the lysyl hydroxylase gene in a patient with the type VI variant of Ehlers-Danlos syndrome. Am J Hum Genet 55:899–906PubMedCentralPubMedGoogle Scholar
  33. Price AL, Eskin E, Pevzner PA (2004) Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res 14:2245–2252PubMedCentralCrossRefPubMedGoogle Scholar
  34. Rajput MK (2014) Retrotransposons: the intrinsic genomic evolutionist. Genes Genomics 37:113–123CrossRefGoogle Scholar
  35. Riveira-Munoz E, He SM, Escaramis G, Stuart PE, Huffmeier U, Lee C, Kirby B, Oka A, Giardina E, Liao W et al (2011) Meta-analysis confirms the LCE3C_LCE3B deletion as a risk factor for psoriasis in several ethnic groups and finds interaction with HLA-Cw6. J Invest Dermatol 131:1105–1109PubMedCentralCrossRefPubMedGoogle Scholar
  36. Sen SK, Han K, Wang J, Lee J, Wang H, Callinan PA, Dyer M, Cordaux R, Liang P, Batzer MA (2006) Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet 79:41–53PubMedCentralCrossRefPubMedGoogle Scholar
  37. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147CrossRefPubMedGoogle Scholar
  38. Tan KL, Board PG (1996) Purification and characterization of a recombinant human Theta-class glutathione transferase (GSTT2-2). Biochem J 315(Pt 3):727–732PubMedCentralCrossRefPubMedGoogle Scholar
  39. Torkar M, Haude A, Milne S, Beck S, Trowsdale J, Wilson MJ (2000) Arrangement of the ILT gene cluster: a common null allele of the ILT6 gene results from a 6.7-kbp deletion. Eur J Immunol 30:3655–3662CrossRefPubMedGoogle Scholar
  40. Wisniewski A, Wagner M, Nowak I, Bilinska M, Pokryszko-Dragan A, Jasek M, Kusnierczyk P (2013) 6.7 kbp deletion in LILRA3 (ILT6) gene is associated with later onset of the multiple sclerosis in a Polish population. Hum Immunol 74:353–357CrossRefPubMedGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer-Science and Media 2015

Authors and Affiliations

  • Jungsu Ha
    • 1
    • 2
  • Wooseok Lee
    • 1
  • Seyoung Mun
    • 1
  • Yun-Ji Kim
    • 1
  • Kyudong Han
    • 1
    • 2
  1. 1.Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonanRepublic of Korea
  2. 2.DKU-Theragen Institute for NGS Analysis (DTiNa)CheonanRepublic of Korea

Personalised recommendations