Skip to main content
Log in

Characterization of cetacean Numt and its application into cetacean phylogeny

Genes & Genomics Aims and scope Submit manuscript

Abstract

The translocations of mitochondrial DNA into chromosomal DNA (nuclear mitochondrial DNA, Numt) are ubiquitous in eukaryotes including yeasts, plants, and animals. The features of Numt and the recent sequencing technology can facilitate an expanded application of Numt into a valuable phylogenetic marker for unresolved taxa. To date, the phylogeny of extant cetaceans has been studied by a variety of morphological and molecular data and still has long attracted attention. Here, the Numts of cattle, two baleen whale and four toothed whales were detected by BLAST-search of the mitochondrial sequences of each species against its corresponding nuclear genome and we investigated the characteristics of cetacean Numt and revisited the phylogeny and evolution of cetartiodactyl using Numts. The content and distribution of Numt length showed similar patterns among six cetacean genomes. Under-representation of D-loop region-derived Numts and different abundance of Numt across D-loop sub-domains were observed in cetacean Numts except sperm whale. Examination of Numt location in cetacean nuclear genomes showed that some of orthologous Numts were integrated into exons, introns, and pseudogenes, suggesting that cetacean Numts may contribute to cetacean biology and evolution. Our phylogenetic study with cetacean Numt based on the maximum likelihood method corresponded to the study from other phylogenetic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antunes A, Ramos MJ (2005) Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes. Genomics 86:708–717

    Article  CAS  PubMed  Google Scholar 

  • Arnason U, Gullberg A, Janke A (2004) Mitogenomic analyses provide new insights into cetacean origin and evolution. Gene 333:27–34

    Article  CAS  PubMed  Google Scholar 

  • Bensasson D, Zhang D-X, Hewitt GM (2000) Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes. Mol Biol Evol 17:406–411

    Article  CAS  PubMed  Google Scholar 

  • Blanchard JW, Schmidt GW (1996) Mitochondrial DNA migration events in yeast and humans: integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution patterns. Mol Biol Evol 13:537–548

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Xu S, Zhou K, Yang G (2011) Whale phylogeny and rapid radiation events revealed using novel retroposed elements and their flanking sequences. BMC Evol Biol 11:314

    Article  PubMed Central  PubMed  Google Scholar 

  • Chorev M, Carmel L (2012) The function of introns. Front Genet 3:55

    Article  PubMed Central  PubMed  Google Scholar 

  • Dayama G, Emery SB, Kidd JM, Mills RE (2014) The genomic landscape of polymorphic human nuclear mitochondrial insertions. Nucleic Acids Res 42:12640–12649

    Article  PubMed Central  PubMed  Google Scholar 

  • Dillon MC, Wright JM (1993) Nucleotide sequence of the D-loop region of the sperm whale (Physeter macrocephalus) mitochondrial genome. Mol Biol Evol 10:296–305

    CAS  PubMed  Google Scholar 

  • Du Buy HG, Riley FL (1967) Hybridization between the nuclear and kinetoplast DNA’s of Leishmania enriettii and between nuclear and mitochondrial DNA’s of mouse liver. Proc Natl Acad Sci USA 57:790–797

    Article  PubMed Central  PubMed  Google Scholar 

  • Foote AD et al (2015) Convergent evolution of the genomes of marine mammals. Nat Genet 47:272–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasegawa M, Adachi J, Milinkovitch MC (1997) Novel phylogeny of whales supported by total molecular evidence. J Mol Evol 44:S117–S120

    Article  CAS  PubMed  Google Scholar 

  • Hassanin A et al (2012) Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C R Biol 335:32–50

    Article  PubMed  Google Scholar 

  • Hazkani-Covo E (2009) Mitochondrial insertions into primate nuclear genomes suggest the use of Numts as a tool for phylogeny. Mol Biol Evol 26:2175–2179

    Article  CAS  PubMed  Google Scholar 

  • Hazkani-Covo E, Covo S (2008) Numt-mediated double-strand break repair mitigates deletions during primate genome evolution. PLoS Genet 4:e1000237

    Article  PubMed Central  PubMed  Google Scholar 

  • Hazkani-Covo E, Graur D (2007) A comparative analysis of Numt evolution in human and chimpanzee. Mol Biol Evol 24:13–18

    Article  CAS  PubMed  Google Scholar 

  • Hazkani-Covo E, Sorek R, Graur D (2003) Evolutionary dynamics of large Numts in the human genome: rarity of independent insertions and abundance of post-insertion duplications. J Mol Evol 56:169–174

    Article  CAS  PubMed  Google Scholar 

  • Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (Numts) in sequenced nuclear genomes. PLoS Genet 6:e1000834

    Article  PubMed Central  PubMed  Google Scholar 

  • Ju YS et al (2015) Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Res 25:814–824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keane M et al (2015) Insights into the evolution of longevity from the bowhead whale genome. Cell Rep 10:112–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kemkemer C, Kohn M, Cooper DN, Froenicke L, Högel J, Hameister H, Kehrer-Sawatzki H (2009) Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution. BMC Evol Biol 9:84

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim JH, Antunes A, Luo SJ, Menninger J, Nash WG, O’Brien SJ, Johnson WE (2006) Evolutionary analysis of a large mtDNA translocation (Numt) into the nuclear genome of the Panthera genus species. Gene 366:292–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez JV, Cevario S, O’Brien SJ (1996) Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics 33:229–246

    Article  CAS  PubMed  Google Scholar 

  • McGowen MR, Spaulding M, Gatesy J (2009) Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol Phylogenet Evol 53:891–906

    Article  CAS  PubMed  Google Scholar 

  • Mercer Tim R, Dinger Marcel E, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  • Michalovova M, Vyskot B, Kejnovsky E (2013) Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization. Heredity 111:314–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millinkovitch MC, Orti G, Meyer A (1993) Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences. Nature 361:346–348

    Article  Google Scholar 

  • Montgelard C, Catzeflis FM, Douzery E (1997) Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol Biol Evol 14:550–559

    Article  CAS  PubMed  Google Scholar 

  • Mourier T, Hansen AJ, Willerslev E, Arctander P (2001) The Human Genome Project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol 18:1833–1837

    Article  CAS  PubMed  Google Scholar 

  • Nergadze SG, Lupotto M, Pellanda P, Santagostino M, Vitelli V, Giulotto E (2010) Mitochondrial DNA insertions in the nuclear horse genome. Animal Genet 41(Suppl 2):176–185

    Article  CAS  PubMed  Google Scholar 

  • Nikaido M et al (2006) Proceedings of the SMBE tri-national young investigators’ workshop 2005. Baleen whale phylogeny and a past extensive radiation event revealed by SINE insertion analysis. Mol Biol Evol 23:866–873

    Article  CAS  PubMed  Google Scholar 

  • Pesole G, Gissi C, Chirico AD, Saccone C (1999) Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol 48:427–434

    Article  CAS  PubMed  Google Scholar 

  • Pink RC, Carter DR (2013) Pseudogenes as regulators of biological function. Essays Biochem 54:103–112

    Article  CAS  PubMed  Google Scholar 

  • Pons J, Vogler AP (2005) Complex pattern of coalescence and fast evolution of a mitochondrial rRNA pseudogene in a recent radiation of tiger beetles. Mol Biol Evol 22:991–1000

    Article  CAS  PubMed  Google Scholar 

  • Qu H, Ma F, Li Q (2008) Comparative analysis of mitochondrial fragments transferred to the nucleus in vertebrate. J Genet Genomics 35:485–490

    Article  PubMed  Google Scholar 

  • Ricchetti M, Fairhead C, Dujon B (1999) Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature 402:96–100

    Article  CAS  PubMed  Google Scholar 

  • Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084

    Article  CAS  PubMed  Google Scholar 

  • Seim I et al (2014) The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal. AGING 6:879–899

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soto-Calderon ID, Lee EJ, Jensen-Seaman MI, Anthony NM (2012) Factors affecting the relative abundance of nuclear copies of mitochondrial DNA (Numts) in hominoids. J Mol Evol 75:102–111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Thewissen JG, Cooper LN, Clementz MT, Bajpai S, Tiwari BN (2007) Whales originated from aquatic artiodactyls in the eocene epoch of India. Nature 450:1190–1194

    Article  CAS  PubMed  Google Scholar 

  • Tsuji J, Frith MC, Tomii K, Horton P (2012) Mammalian NUMT insertion is non-random. Nucleic Acids Res 40:9073–9088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang W, Zhong J, Su B, Zhou Y, Wang YQ (2007) Comparison of Pax1/9 locus reveals 500-Myr-old syntenic block and evolutionary conserved noncoding regions. Mol Biol Evol 24:784–791

    Article  CAS  PubMed  Google Scholar 

  • Yaakub SM, Bellwood DR, Herwerden L, Walsh FM (2006) Hybridization in coral reef fishes: introgression and bi-directional gene exchange in Thalassoma (family Labridae). Mol Phylogenet Evol 40:84–100

    Article  CAS  PubMed  Google Scholar 

  • Yim HS et al (2014) Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46:88–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu X, Gabriel A (1999) Patching broken chromosomes with extranuclear cellular DNA. Mol Cell 4:873–881

    Article  CAS  PubMed  Google Scholar 

  • Zhou X et al (2013) Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nat Commun 4:2708

    PubMed Central  PubMed  Google Scholar 

  • Zischler H (2000) Nuclear integrations of mitochondrial DNA in primates; inference of associated mutational events. Electrophoresis 21:531–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Phillip A Morin at National Marine Fisheries Service, NOAA, La Jolla, CA, USA for helpful comments on this manuscript. This study was supported by an in-house program (PE99314) from KIOST (Korea Institute of Ocean Science & Technology).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Hyun Lee or Hyung-Soon Yim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Hyung-Soon Yim, Young-Joon Ko, and Eun Chan Yang these authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, YJ., Yang, E.C., Lee, JH. et al. Characterization of cetacean Numt and its application into cetacean phylogeny. Genes Genom 37, 1061–1071 (2015). https://doi.org/10.1007/s13258-015-0353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0353-7

Keywords

Navigation