Genes & Genomics

, Volume 37, Issue 9, pp 737–742 | Cite as

MicroRNA sequencing detects miR-424-5p up-regulation in ovarian cancer stem cells

  • Ji Ho Yun
  • Jisun Lim
  • In Su Ha
  • Ji Min Shin
  • Jung Hoon Kim
  • Jungho Kim
  • Chu Won Nho
  • Yoon Shin Cho
Research Article

Abstract

Cancer stem cells (CSCs) are cancer cells that possess the ability to undergo continuous proliferation and self-renewal. It has been postulated that CSCs are responsible for tumor growth, heterogeneity, invasion, metastasis, and recurrence. MicroRNAs (miRNAs), small non-coding RNAs of approximately 22 nucleotides, are known to be involved in the maintenance of CSCs. To gain insight into the role of miRNAs in CSCs, we investigated the differential expression of miRNAs in ovarian CSCs compared to non-CSCs. Ovarian CSCs were isolated from the human ovarian cancer cell line SK-OV-3 using two ovarian CSC-specific surface markers, CD44 and CD117. The expression levels of miRNAs in CSCs and non-CSCs were estimated by miRNA sequencing. We detected four up-regulated miRNAs (miR-29a-5p, miR-34c-5p, miR-106a-5p, and miR-424-5p) in ovarian CSCs, and miR-424-5p was validated by real-time qPCR. MiR-424-5p target genes were predicted using several validated target databases and computational algorithms. Pathway analysis indicated that most miR-424-5p target genes are involved in cancer-related biological pathways. Overall, these results suggest that miR-424-5p is a potential regulator of CSCs that endows human ovarian tissue with tumorigenic potential and thus represents a potential therapeutic target for human ovarian cancer.

Keywords

Ovarian cancer stem cells SK-OV-3 cells microRNA microRNA sequencing 

Notes

Acknowledgments

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2012M3A9D1054534), the Hallym University Specialization Fund (HRF-S-11), and an intramural grant from the Korea Institute of Science and Technology (2z04381).

Conflict of interest

The authors declare no conflicts of interest.

Ethical statement

In this study, human ovarian cancer cells were obtained from the commercially available human ovary adenocarcinoma (ATCC® HTB-77™). This study was approved by Hallym University Institutional Review Board (HIRB).

Supplementary material

13258_2015_299_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)
13258_2015_299_MOESM2_ESM.docx (195 kb)
Supplementary material 2 (DOCX 194 kb)
13258_2015_299_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 17 kb)
13258_2015_299_MOESM4_ESM.docx (64 kb)
Supplementary material 4 (DOCX 63 kb)
13258_2015_299_MOESM5_ESM.docx (241 kb)
Supplementary material 5 (DOCX 241 kb)
13258_2015_299_MOESM6_ESM.docx (211 kb)
Supplementary material 6 (DOCX 211 kb)
13258_2015_299_MOESM7_ESM.docx (17 kb)
Supplementary material 7 (DOCX 16 kb)

References

  1. Alvero AB, Chen R, Fu HH et al (2009) Molecular phenotyping of human ovarian cancer stem cells unravel the mechanisms for repair and chemo-resistance. Cell Cycle 8:158–166PubMedCentralCrossRefPubMedGoogle Scholar
  2. Ashburner M, Ball CA, Blake JA et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bapat SA (2010) Human ovarian cancer stem cells. Reproduction 140:33–41CrossRefPubMedGoogle Scholar
  4. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193CrossRefPubMedGoogle Scholar
  5. Chen D, Zhang Y, Wang J, Chen J, Yang C, Cai K, Wang X, Shi F, Dou J (2013a) MicroRNA-200c overexpression inhibits tumorigenicity and metastasis of CD117 + CD44 + ovarian cancer stem cells by regulating epithelial-mesenchymal transition. J Ovarian Res 6:50PubMedCentralCrossRefPubMedGoogle Scholar
  6. Chen J, Wang J, Chen D, Yang J, Yang C, Zhang Y, Zhang H, Dou J (2013b) Evaluation of characteristics of CD44 + CD117 + ovarian cancer stem cells in three dimensional basement membrane extract scaffold versus two dimensional monocultures. BMC Cell Biol 14:7PubMedCentralCrossRefPubMedGoogle Scholar
  7. Deiters A (2010) Small Molecule Modifiers of the microRNA and RNA Interference Pathway. AAPS J 12:51–60PubMedCentralCrossRefPubMedGoogle Scholar
  8. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:R60PubMedCentralCrossRefGoogle Scholar
  9. Di Leva G, Croce CM (2013) The Role of microRNAs in the Tumorigenesis of Ovarian Cancer. Front Oncol 3:153PubMedCentralPubMedGoogle Scholar
  10. He L, Hannon GJ (2004) Micrornas: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531CrossRefPubMedGoogle Scholar
  11. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  12. Iorio MV, Visone R, Di Leva G et al (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707CrossRefPubMedGoogle Scholar
  13. Kanehisa M, Goto S (2000) KEGG: kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30PubMedCentralCrossRefPubMedGoogle Scholar
  14. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357PubMedCentralCrossRefPubMedGoogle Scholar
  15. Kreso A, Dick JE (2014) Evolution of the Cancer Stem Cell Model. Cell Stem Cell 14:275–291CrossRefPubMedGoogle Scholar
  16. Li F, Tiede B, Massague J, Kang YB (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17:3–14CrossRefPubMedGoogle Scholar
  17. Liu C, Tang DG (2011) MicroRNA Regulation of Cancer Stem Cells. Cancer Res 71:5950–5954PubMedCentralCrossRefPubMedGoogle Scholar
  18. Luo LJ, Zeng JF, Liang B, Zhao Z, Sun LL, Cao DY, Yang JX, Shen K (2011) Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Exp Mol Pathol 91:596–602CrossRefPubMedGoogle Scholar
  19. Oneyama C, Kito Y, Asai R et al (2013) MiR-424/503-mediated Rictor upregulation promotes tumor progression. PLOS One 8:e80300PubMedCentralCrossRefPubMedGoogle Scholar
  20. Papagiannakopoulos T, Kosik KS (2008) MicroRNAs: regulators of oncogenesis and stemness. BMC Med 6:15PubMedCentralCrossRefPubMedGoogle Scholar
  21. Park YT, Jeong JY, Lee MJ, Kim KI, Kim TH, Kwon YD, Lee C, Kim OJ, An HJ (2013) MicroRNAs overexpressed in ovarian ALDH1-positive cells are associated with chemoresistance. J Ovarian Res 6:18PubMedCentralCrossRefPubMedGoogle Scholar
  22. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111CrossRefPubMedGoogle Scholar
  23. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedCentralCrossRefPubMedGoogle Scholar
  24. Zaman MS, Maher DM, Khan S, Jaggi M, Chauhan SC (2012) Current status and implications of microRNAs in ovarian cancer diagnosis and therapy. J Ovarian Res 5:13CrossRefGoogle Scholar
  25. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang THM, Nephew KP (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68:4311–4320PubMedCentralCrossRefPubMedGoogle Scholar
  26. Zhang D, Shi Z, Li M, Mi J (2014) Hypoxia-induced miR-424 decreases tumor sensitivity to chemotherapy by inhibiting apoptosis. Cell Death Dis 5:6Google Scholar

Copyright information

© The Genetics Society of Korea and Springer-Science and Media 2015

Authors and Affiliations

  • Ji Ho Yun
    • 1
    • 2
  • Jisun Lim
    • 3
  • In Su Ha
    • 1
  • Ji Min Shin
    • 1
  • Jung Hoon Kim
    • 2
  • Jungho Kim
    • 2
  • Chu Won Nho
    • 1
  • Yoon Shin Cho
    • 3
  1. 1.Natural Products Research CenterKIST Gangneung Institute of Natural ProductsGangneungRepublic of Korea
  2. 2.Department of Life ScienceSogang UniversitySeoulRepublic of Korea
  3. 3.Department of Biomedical ScienceHallym UniversityChuncheonRepublic of Korea

Personalised recommendations