Skip to main content

Advertisement

Log in

Genome wide survey and analysis of microsatellites in Tombusviridae family

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Microsatellites are small repetitive sequences found in all kingdoms of life including viruses. Members of the Tombusviridae family severely affect growth of wide range of plants and reduce economic yield in diverse cropping systems worldwide. Here, we analyzed the nature and distribution of both simple and complex microsatellites present in complete genome of 47 species of Tombusviridae family. Our results showed, in all analyzed genomes, genome size and GC content had a weak influence on number, relative abundance and relative density of microsatellites, respectively. For each genome, dinucleotide repeats followed by mononucleotide repeats were found to be highly predominant. Mononucleotide repeats were found to be underrepresented in majority of Tombusviridae genomes. Poly G and Poly C repeats were more abundant as compared to poly A or poly T nucleotides. TG/GT and AG/CA was the most abundant dinucleotide repeat motif observed in Tombusviridae genomes. Repeats larger than trinucleotide were never found in these viral genomes. Comparative study of relative abundance and density of microsatellite among available RNA and DNA viral genomes indicated that simple repeats were lower than many RNA virus genomes. To our knowledge, this is the first analysis of microsatellites occurring in Tombusviridae genomes. Characterization of such variations in repeat sequences would be important in deciphering the origin, mutational processes, and role of repeat sequences in viral genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam CM, George B, Sharfuddin C, Jain SK, Chakraborty S (2013) Occurrence and analysis of imperfect microsatellites in diverse potyvirus genomes. Gene 521:238–244

    Article  CAS  PubMed  Google Scholar 

  • Benet A, Mollà G, Azorín F (2000) Microsatellite DNA sequences enhance homologous DNA recombination in SV40 minichromosomes. Nucleic Acids Res 28:4617–4622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boyko A, Kathiria P, Zemp FJ, Yao Y, Pogribny I, Kovalchuk I (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Res 35:1714–1725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen M, Tan Z, Jiang J, Li M, Chen H, Shen G, Yu R (2009) Similar distribution of simple sequence repeats in diverse completed Human Immunodeficiency Virus Type 1 genomes. FEBS Lett 583:2959–2963

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zeng G, Tan Z, Jiang M, Zhang J, Zhang C, Lu L, Lin Y, Peng J (2011) Compound microsatellites in complete Escherichia coli genomes. FEBS Lett 585:1072–1076

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Tan Z, Zeng G, Zhuotong Z (2012) Differential distribution of compound microsatellites in various Human Immunodeficiency Virus Type 1 complete genomes. Infect Genet Evol 12:1452–1457

    Article  CAS  PubMed  Google Scholar 

  • Coenye T, Vandamme P (2005) Characterization of mononucleotide repeats in sequenced prokaryotic genomes. DNA Res 12:221–233

    Article  CAS  PubMed  Google Scholar 

  • Davis CL, Field D, Metzgar D, Saiz R, Morin PA, Smith IL, Spector SA, Wills C (1999) Numerous length polymorphisms at short tandem repeats in human cytomegalovirus. J Virol 73:6265–6270

    PubMed Central  CAS  PubMed  Google Scholar 

  • De wachter R (1981) The number of repeats expected in random nucleic acid sequences and found in genes. J Theor Biol 91:71–98

    Article  CAS  PubMed  Google Scholar 

  • Deback C, Boutolleau D, Depienne C, Luyt CE, Bonnafous P, Gautheret-Dejean A, Garrigue I, Agut H (2009) Utilization of microsatellite polymorphism for differentiating herpes simplex virus type 1 strains. J Clin Microbiol 47:533–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dieringer D, Schlotterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 13:2242–2251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duffy S, Holmes EC (2008) Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. J Virol 82:957–965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  CAS  PubMed  Google Scholar 

  • George B, Mashhood AC, Jain SK, Sharfuddin C, Chakraborty S (2012) Differential distribution and occurrence of simple sequence repeats in diverse geminivirus genomes. Virus Genes 45:556–566

    Article  CAS  PubMed  Google Scholar 

  • George B, Gnanasekaran P, Jain SK, Chakraborty S (2014) Genome wide survey and analysis of small repetitive sequences in caulimoviruses. Infect Genet Evol 27:15–24

    Article  CAS  PubMed  Google Scholar 

  • Groisman EA, Casadesu´s J (2005) The origin and evolution of human pathogens. Mol Microbiol 56:1–7

    Article  CAS  PubMed  Google Scholar 

  • Gur-Arie R, Cohen CJ, Eitan Y (2000) Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genome Res 10:62–71

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hull R (2002) Matthews’ plant virology. Academic Press, San Diego

    Google Scholar 

  • Jiwan SD, White KA (2011) Subgenomic mRNA transcription in Tombusviridae RNA Biol 8:287–294

    Article  CAS  PubMed  Google Scholar 

  • Karaoglu H, Lee CM, Meyer W (2005) Survey of simple sequence repeats in completed fungal genomes. Mol Biol Evol 22:639–649

    Article  CAS  PubMed  Google Scholar 

  • Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22:253–259

    Article  CAS  PubMed  Google Scholar 

  • Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13:74–78

    Article  CAS  PubMed  Google Scholar 

  • Kathiria P, Golubov A, Sidler C, Kalischuk M, Kawchuk LM, Kovalchuk I (2010) Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial and fungal pathogens in the progeny of infected tobacco plants. Plant Physiol 153:1859–1870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 18:30–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kofler R, Schlotterer C, Luschutzky E, Lelley T (2008) Survey of microsatellite clustering in eight fully sequenced species sheds light on the origin of compound microsatellites. BMC Genom 9:612

    Article  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Kalck V, Boyko V, Filkowski J, Heinlein M, Hohn B (2003) Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 423:760–762

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Singh AK, Chattopadhyay B, Chakraborty S (2011) A new begomovirus species and betasatellite causing severe tomato leaf curl disease in Ranchi, India. New Dis Rep 23:11

    Article  Google Scholar 

  • Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  CAS  PubMed  Google Scholar 

  • Metzgar D, Bytof J, Wills C (2000) Selection against frame shift mutations limits microsatellite expansion in coding DNA. Genome Res 10:72–80

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  CAS  PubMed  Google Scholar 

  • Mrazek J (2006) Analysis of distribution indicates diverse functions of simple sequence repeats in Mycoplasma genomes. Mol Biol Evol 23:1370–1385

    Article  CAS  PubMed  Google Scholar 

  • Mudunuri SB, Nagarajaram HA (2007) IMEx: imperfect microsatellite extractor. Bioinformatics 23:1181–1187

    Article  CAS  PubMed  Google Scholar 

  • Murphy KE, Stringer JR (1986) RecA independent recombination of poly[d(GT)-d(CA)] in pBR322. Nucleic Acids Res 14:7325–7340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Napierala M, Parniewski P, Pluciennik A, Wells RD (2002) Long CTG.CAG repeat sequences markedly stimulate intramolecular recombination. J Biol Chem 277:34087–34100

    Article  CAS  PubMed  Google Scholar 

  • Napierala M, Dere R, Vetcher A, Wells RD (2004) Structure-dependent recombination hot spot activity of GAA.TTC sequences from intron 1 of the Friedreich’s ataxia gene. J Biol Chem 279:6444–6454

    Article  CAS  PubMed  Google Scholar 

  • Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225

    Article  CAS  PubMed  Google Scholar 

  • Pauli S, Rothnie HM, Chen G, He X, Hohn T (2004) The cauliflower mosaic virus 35S promoter extends into the transcribed region. J Virol 78:12120–12128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sawaya SM, Bagshaw AT, Buschiazzo E, Gemmell NJ (2012) Promoter microsatellites as modulators of human gene expression. Adv Exp Med Biol 769:41–54

    Article  CAS  PubMed  Google Scholar 

  • Alam CM, Singh, AK, Sharfuddin C, Ali S (2014) Genome-wide scan for extraction and analysis of simple and imperfect microsatellites in diverse carlaviruses. Infect Genet Evol 21:287–294 (ISSN: 1567–1348)

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toth G, Gáspári X, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Usdin K (2008) The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res 18:1011–1019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vinces MD, Legendre M, Caldara M, Hagihara M, Verstrepen KJ (2009) Unstable tandem repeats in promoters confer transcriptional resolvability. Science 324:1213–1216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Blessy software solution for support.

Conflict of interest

Authors declare that they do not have any conflict of interest regarding this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biju George or Ram Nageena Singh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, B., George, B., awasthi, M. et al. Genome wide survey and analysis of microsatellites in Tombusviridae family. Genes Genom 37, 657–667 (2015). https://doi.org/10.1007/s13258-015-0295-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0295-0

Keywords

Navigation