Skip to main content

Advertisement

Log in

DNA methylation of mobile genetic elements in human cancers

  • Review
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Mobile genetic elements are responsible for half of the human genome, creating the host genomic instability or variability through several mechanisms. Two types of abnormal DNA methylation in the genome, hypomethylation and hypermethylation, are associated with cancer progression. Genomic hypermethylation has been most often observed on the CpG islands around gene promoter regions in cancer cells. In contrast, hypomethylation has been observed on mobile genetic elements in the cancer cells. It is recently considered that the hypomethylation of mobile genetic elements may play a biological role in cancer cells along with the DNA hypermethylation on CpG islands. Growing evidence has indicated that mobile genetic elements could be associated with the cancer initiation and progression through the hypomethylation. Here we review the recent progress on the relationship between DNA methylation and mobile genetic elements, focusing on the hypomethylation of LINE-1 and HERV elements in various human cancers and suggest that DNA hypomethylation of mobile genetic elements could have potential to be a new cancer therapy target in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andersson ML, Medstrand P, Yin H, Blomberg J (1996) Differential expression of human endogenous retroviral sequences similar to mouse mammary tumor virus in normal peripheral blood mononuclear cells. AIDS Res Hum Retroviruses 12:833–840

    Article  PubMed  CAS  Google Scholar 

  • Armbruester V, Sauter M, Krautkraemer E, Meese E, Kleiman A, Best B, Roemer K, Mueller-Lantzsch N (2002) A novel gene from the human endogenous retrovirus K expressed in transformed cells. Clin Cancer Res 8:1800–1807

    PubMed  CAS  Google Scholar 

  • Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV (2010) LINE-1 retrotransposition activity in human genomes. Cell 141:1159–1170

    Article  PubMed  CAS  Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  PubMed  CAS  Google Scholar 

  • Bjerregaard B, Holck S, Christensen IJ, Larsson LI (2006) Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci 63:1906–1911

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD, Stoye JP (1997) Retrotransposons, Endogenous Retroviruses, and the Evolution of Retroelements. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)

    Google Scholar 

  • Bratthauer GL, Fanning TG (1992) Active LINE-1 retrotransposons in human testicular cancer. Oncogene 7:507–510

    PubMed  CAS  Google Scholar 

  • Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 100:5280–5285

    Article  PubMed  CAS  Google Scholar 

  • Buscher K, Trefzer U, Hofmann M, Sterry W, Kurth R, Denner J (2005) Expression of human endogenous retrovirus K in melanomas and melanoma cell lines. Cancer Res 65:4172–4180

    Article  PubMed  Google Scholar 

  • Buscher K, Hahn S, Hofmann M, Trefzer U, Ozel M, Sterry W, Lower J, Lower R, Kurth R, Denner J (2006) Expression of the human endogenous retrovirus-K transmembrane envelope, Rec and Np9 proteins in melanomas and melanoma cell lines. Melanoma Res 16:223–234

    Article  PubMed  Google Scholar 

  • Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-ngam D, Voravud N, Sriuranpong V, Mutirangura A (2004) Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 23:8841–8846

    Article  PubMed  CAS  Google Scholar 

  • Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395:89–93

    Article  PubMed  CAS  Google Scholar 

  • Cho YH, Yazici H, Wu HC, Terry MB, Gonzalez K, Qu M, Dalay N, Santella RM (2010) Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Res 30:2489–2496

    PubMed  CAS  Google Scholar 

  • Clifford SC, Prowse AH, Affara NA, Buys CH, Maher ER (1998) Inactivation of the von Hippel–Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes Chromosom Cancer 22:200–209

    Article  PubMed  CAS  Google Scholar 

  • Compare D, Rocco A, Liguori E, D’Armiento FP, Persico G, Masone S, Coppola-Bottazzi E, Suriani R, Romano M, Nardone G (2011) Global DNA hypomethylation is an early event in Helicobacter pylori-related gastric carcinogenesis. J Clin Pathol 64:677–682

    Article  PubMed  Google Scholar 

  • Cordaux R, Udit S, Batzer MA, Feschotte C (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA 103:8101–8106

    Article  PubMed  CAS  Google Scholar 

  • Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R, Kotsinas A, Gorgoulis V, Field JK, Liloglou T (2009) Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 124:81–87

    Article  PubMed  CAS  Google Scholar 

  • Depil S, Roche C, Dussart P, Prin L (2002) Expression of a human endogenousretrovirus, HERV-K, in the blood cells of leukemia patients. Leukemia 16:254–259

    Article  PubMed  CAS  Google Scholar 

  • Dobigny G, Ozouf-Costaz C, Waters PD, Bonillo C, Coutanceau JP, Volobouev V (2004) LINE-1 amplification accompanies explosive genome repatterning in rodents. Chromosome Res 12:787–793

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M, Woods CB, Yu MC, Dubeau L, Yang F, Campan M, Weisenberger DJ, Long T, Youn B, Fiala ES et al (2006) Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 25:2636–2645

    Article  PubMed  CAS  Google Scholar 

  • Estécio MR, Gallegos J, Vallot C, Castoro RJ, Chung W, Maegawa S, Oki Y, Kondo Y, Jelinek J, Shen L et al (2010) Genome architecture marked by retrotransposons modulates predisposition to DNA methylation in cancer. Genome Res 20:1369–1382

    Article  PubMed  Google Scholar 

  • Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB, Herman JG (1998) Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res 58:4515–4518

    PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  PubMed  CAS  Google Scholar 

  • Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11:6883–6894

    Article  PubMed  CAS  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausberg RL, Venter JC, Wilson RK et al (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234

    Article  PubMed  CAS  Google Scholar 

  • Goodier JL, Ostertag EM, Engleka KA, Seleme MC, Kazazian HH Jr (2004) A potential role for the nucleolus in L1 retrotransposition. Hum Mol Genet 13:1041–1048

    Article  PubMed  CAS  Google Scholar 

  • Gregory SG, Sekhon M, Schein J, Zhao S, Osoegawa K, Scott CE, Evans RS, Burridge PW, Cox TV, Fox CA et al (2002) A physical map of the mouse genome. Nature 418:743–750

    Article  PubMed  CAS  Google Scholar 

  • Guz J, Foksiński M, Oliński R (2010) Global DNA hipomethylation–the meaning in carcinogenesis. Postepy Biochem 56:16–21

    PubMed  CAS  Google Scholar 

  • Han K, Sen SK, Wang J, Callinan PA, Lee J, Cordaux R, Liang P, Batzer MA (2005) Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Nucleic Acids Res 33:4040–4052

    Article  PubMed  CAS  Google Scholar 

  • Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA (2008) L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci USA 105:19366–19371

    Article  PubMed  CAS  Google Scholar 

  • Herman JG (1999) Hypermethylation of tumor suppressor genes in cancer. Semin Cancer Biol 9:359–367

    Article  PubMed  CAS  Google Scholar 

  • Herman JG, Baylin SB (2000) Promoter-region hypermethylation and gene silencing in human cancer. Curr Top Microbiol Immunol 249:35–54

    Article  PubMed  CAS  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  PubMed  CAS  Google Scholar 

  • Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55:4525–4530

    PubMed  CAS  Google Scholar 

  • Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB (1997) Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 57:837–841

    PubMed  CAS  Google Scholar 

  • Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83:296–321

    Article  PubMed  CAS  Google Scholar 

  • Issa JP (2000) The epigenetics of colorectal cancer. Ann N Y Acad Sci 910:140–153

    Article  PubMed  CAS  Google Scholar 

  • Jackson K, Yu MC, Arakawa K, Fiala E, Youn B, Fiegl H, Müller-Holzner E, Widschwendter M, Ehrlich M (2004) DNA hypomethylation is prevalent even in low-grade breast cancers. Cancer Biol Ther 3:1225–1231

    Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  • Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, Jessup JM, Kolodner R (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57:808–811

    PubMed  CAS  Google Scholar 

  • Kim YI, Giuliano A, Hatch KD, Schneider A, Nour MA, Dallal GE, Selhub J, Mason JB (1994) Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer 74:893–899

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Kelly WK, Fu A, Haines K, Hoffman A, Zheng T, Zhu Y (2011) Genome-wide methylation analysis identifies involvement of TNF-alpha mediated cancer pathways in prostate cancer. Cancer Lett 302:47–53

    Article  PubMed  CAS  Google Scholar 

  • Kwon HJ, Kim JH, Bae JM, Cho NY, Kim TY, Kang GH (2010) DNA methylation changes in ex-adenoma carcinoma of the large intestine. Virchows Arch 457:433–441

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L et al (1993) Identification of the von Hippel–Lindau disease tumor suppressor gene. Science 260:1317–1320

    Article  PubMed  CAS  Google Scholar 

  • Löwer R, Löwer J, Kurth R (1996) The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci USA 93:5177–5184

    Article  PubMed  Google Scholar 

  • Martin MA, Bryan T, Rasheed S, Khan AS (1981) Identification and cloning of endogenous retroviral sequences present in human DNA. Proc Natl Acad Sci USA 78:4892–4896

    Article  PubMed  CAS  Google Scholar 

  • Mayer J, Meese E (2005) Human endogenous retroviruses in the primate lineage and their influence on host genomes. Cytogenet Genome Res 110:448–456

    Article  PubMed  CAS  Google Scholar 

  • Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1:686–692

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Hillier LW, Eichler EE, Zody MC, Zody MC, Jaffe DB, Yang SP, Enard W, Hellmann I, Lindblad-Toh K et al (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Article  CAS  Google Scholar 

  • Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Yoon SC, Ye K, Cheetham RK et al (2011) 1000 Genomes Project. Mapping copy number variation by population-scale genome sequencing. Nature 470:59–65

    Article  PubMed  CAS  Google Scholar 

  • Muir A, Lever A, Moffett A (2004) Expression and functions of human endogenous retroviruses in the placenta: an update. Placenta 25(Suppl A):S16–S25

    Article  PubMed  CAS  Google Scholar 

  • Muster T, Waltenberger A, Grassauer A, Hirschl S, Caucig P, Romirer I, Fodinger D, Seppele H, Schanab O, Magin-Lachmann C et al (2003) An endogenous retrovirus derived from human melanoma cells. Cancer Res 63:8735–8741

    PubMed  CAS  Google Scholar 

  • Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17:619–621

    Article  PubMed  CAS  Google Scholar 

  • Ogino S, Kawasaki T, Nosho K, Ohnishi M, Suemoto Y, Kirkner GJ, Fuchs CS (2008) LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer 122:2767–2773

    Article  PubMed  CAS  Google Scholar 

  • Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538

    Article  PubMed  CAS  Google Scholar 

  • Otterson GA, Khleif SN, Chen W, Coxon AB, Kaye FJ (1995) CDKN2 gene silencing in lung cancer by DNA hypermethylation and kinetics of p16INK4 protein induction by 5-aza 2′deoxycytidine. Oncogene 11:1211–1216

    PubMed  CAS  Google Scholar 

  • Patzke S, Lindeskog M, Munthe E, Aasheim HC (2002) Characterization of a novel humanendogenous retrovirus, HERV-H/F, expressed in human leukemia cell lines. Virology 303:164–173

    Article  PubMed  CAS  Google Scholar 

  • Prowse AH, Webster AR, Richards FM, Richard S, Olschwang S, Resche F, Affara NA, Maher ER (1997) Somatic inactivation of the VHL gene in Von Hippel–Lindau disease tumors. Am J Hum Genet 60:765–771

    PubMed  CAS  Google Scholar 

  • Qian XC, Brent TP (1997) Methylation hot spots in the 5′ flanking region denote silencing of the O6-methylguanine-DNA methyltransferase gene. Cancer Res 57:3672–3677

    PubMed  CAS  Google Scholar 

  • Qu G, Dubeau L, Narayan A, Yu MC, Ehrlich M (1999) Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. Mutat Res 423:91–101

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez J, Vives L, Jorda M, Morales C, Munoz M, Vendrell E, Peinado MA (2008) Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Res 36:770–784

    Article  PubMed  CAS  Google Scholar 

  • Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, San Jose-Eneriz E, Garate L, Cordeu L, Cervantes F, Prosper F et al (2008) Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia. Leuk Res 32:487–490

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP (1991) Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 48:880–888

    PubMed  CAS  Google Scholar 

  • Santourlidis S, Florl A, Ackermann R, Wirtz HC, Schulz WA (1999) High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39:166–174

    Article  PubMed  CAS  Google Scholar 

  • Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, Hobolth A, Lappalainen T, Mailund T, Marques-Bonet T et al (2012) Insights into hominid evolution from the gorilla genome sequence. Nature 483:169–175

    Article  PubMed  CAS  Google Scholar 

  • Shen L, Fang J, Qiu D, Zhang T, Yang J, Chen S, Xiao S (1998) Correlation between DNA methylation and pathological changes in human hepatocellular carcinoma. Hepatogastroenterology 45:1753–1759

    PubMed  CAS  Google Scholar 

  • Stoye JP (2001) Endogenous retroviruses: still active after all these years? Curr Biol 11:R914–R916

    Article  PubMed  CAS  Google Scholar 

  • Tellez CS, Shen L, Estecio MR, Jelinek J, Gershenwald JE, Issa JP (2009) CpG island methylation profiling in human melanoma cell lines. Melanoma Res 19:146–155

    Article  PubMed  CAS  Google Scholar 

  • Ushijima T (2005) Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 5:223–231

    Article  PubMed  CAS  Google Scholar 

  • Wang-Johanning F, Frost AR, Jian B, Epp L, Lu DW, Johanning GL (2003a) Quantitationof HERV-K env gene expression and splicing in human breast cancer. Oncogene 22:1528–1535

    Article  PubMed  CAS  Google Scholar 

  • Wang-Johanning F, Frost AR, Jian B, Azerou R, Lu DW, Chen DT, Johanning GL (2003b) Detecting the expression of human endogenous retrovirus E envelope transcripts inhuman prostate adenocarcinoma. Cancer 98:187–197

    Article  PubMed  CAS  Google Scholar 

  • Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, Belov K, Miller W, Clarke L, Chinwalla AT et al (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:175–183

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw E, Martin DI (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet 27:361–365

    Article  PubMed  CAS  Google Scholar 

  • Widschwendter M, Jiang G, Woods C, Müller HM, Fiegl H, Goebel G, Marth C, Müller-Holzner E, Zeimet AG, Laird PW et al (2004) DNA hypomethylation and ovarian cancer biology. Cancer Res 64:4472–4480

    Google Scholar 

  • Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD, Yang AS, Jones PA, Liang G (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6:e1000917

    Article  PubMed  Google Scholar 

  • Yang AS, Estécio MR, Doshi K, Kondo Y, Tajara EH, Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38

    Article  PubMed  Google Scholar 

  • Yi JM, Kim HS (2006) Molecular evolution of the HERV-E family in primates. Arch Virol 151:1107–1116

    Article  PubMed  CAS  Google Scholar 

  • Yi JM, Kim TH, Huh JW, Park KS, Jang SB, Kim HM, Kim HS (2004) Human endogenous retroviral elements belonging to the HERV-S family from human tissues, cancer cells, and primates: expression, structure, phylogeny and evolution. Gene 342:283–292

    Article  PubMed  CAS  Google Scholar 

  • Yi JM, Kim HM, Kim HS (2006) Human endogenous retrovirus HERV-H family in human tissues and cancer cells: expression, identification, and phylogeny. Cancer Lett 231:228–239

    Article  PubMed  CAS  Google Scholar 

  • Yi JM, Schuebel K, Kim HS (2007) Molecular genetic analyses of human endogenous retroviral elements belonging to the HERV-P family in primates, human tissues, and cancer cells. Genomics 89:1–9

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Yamashita S, Takamura-Enya T, Niwa T, Ando T, Enomoto S, Maekita T, Nakazawa K, Tatematsu M, Ichinose M et al (2011) Alu and Satalpha hypomethylation in Helicobacter pylori-infected gastric mucosae. Int J Cancer 128:33–39

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National R&D program (50596-2013) through the Dongnam Institute of Radiological & Medical Sciences (DIRAMS) funded by the Korean Ministry of Education, Science and Technology and by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-10069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Mi Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, K., Lee, J., Km, HS. et al. DNA methylation of mobile genetic elements in human cancers. Genes Genom 35, 265–271 (2013). https://doi.org/10.1007/s13258-013-0095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-013-0095-3

Keywords