Skip to main content
Log in

Molecular cloning and analysis of residues associated with iron binding of Spodoptera litura transferrin

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

We isolated transferrin cDNA from tobacco cutworm (Spodoptera litura) and refer to it as SlTf (Spodoptera litura transferrin). The 2,237-bp SlTf cDNA encoded 685 amino acids, with a predicted Mw of 76.3 kDa and an isoelectric point of pH 7.97. The amino acid sequence of the SlTf protein had 11–81% similarity with those of other reported animal transferrins, showing the highest similarity with another Lepidopteran insect, the silkworm (Bombyx mori), and the lowest similarity with atlantic cod (Gadus morhua) serum transferrin. Phylogenetic tree analysis showed that SlTf was close to transferrins of B. mori and M. sexta. By urea-polyacrylamide gel electrophoresis, four different iron-bound forms (apo-, C-terminal monoferric, N-terminal monoferric and diferric) were found from both SlTf and human transferrin, suggesting the C-lobe iron-binding motif of SlTf possesses the iron-biding activity, although its amino acid sequence is not well conserved compare to that of vertebrate transferrins. Accordingly, we suggest that the amino acid residues of iron-binding sites in SlTf are different from those of human serum transferrin, however the iron-binding capacity is conserved in both the C-lobe and the N-lobe of SlTf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe Y, Nagata R, Hasunuma Y and Yokosawa H (2001) Isolation, characterization and cDNA cloning of a one-lobed transferrin from the ascidian Halocynthia roretzi. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 128: 73–79.

    Article  PubMed  CAS  Google Scholar 

  • Adams TE, Mason AB, He QY, Halbrooks PJ, Briggs SK, Smith, VC, MacGillivray RT and Everse SJ (2003) The position of arginine 124 controls the rate of iron release from the N-lobe of human serum transferrin. A structural study. J. Biol. Chem. 278: 6027–6033.

    CAS  Google Scholar 

  • Ampasala DR, Zheng SC, Retnakaran A, Krell PJ, Arif BM and Feng QL (2004) Cloning and expression of a putative transferrin cDNA of the spruce budworm, Choristoneura fumiferana. Insect Biochem. Mol. Biol. 34: 493–500.

    Article  PubMed  CAS  Google Scholar 

  • Anderson BF, Baker HM, Norris GE, Rice DW and Baker EN (1989) Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J. Mol. Biol. 209: 711–734.

    CAS  Google Scholar 

  • Bailey S, Evans RW, Garratt RC, Gorinsky B, Hasnain S, Horsburgh C, Jhoti H, Lindley PF, Mydin A, Sarra R and Watson JL (1988) Molecular structure of serum transferrin at 3.3-A resolution. Biochemistry 27: 5804–5812.

    Article  PubMed  CAS  Google Scholar 

  • Baker HM, He QY, Briggs SK, Mason AB and Baker EN (2003) Structural and functional consequences of binding site mutations in transferrin: crystal structures of the Asp63Glu and Arg124Ala mutants of the N-lobe of human transferrin. Biochemistry 42: 7084–7089.

    Article  PubMed  CAS  Google Scholar 

  • Bartfeld NS and Law JH (1990) Isolation and molecular cloning of transferrin from the tobacco hornworm, Manduca sexta. Sequence similarity to the vertebrate transferrins. J. Biol. Chem. 265: 21684–21691.

    PubMed  CAS  Google Scholar 

  • Evans RW, Crawley JB, Joannou CL and Sharma ND (1999) In: Bullen, J.J., Griffiths, E. (Eds.), Iron and Infection: Molecular, Physiological and Clinical Aspects. John Wiley and Sons, Chichester, pp. 27–86.

    Google Scholar 

  • Fitzgerald M and Shenk T (1981) The sequence 5′-AAUAAA-3′ forms parts of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24: 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Goo TW, Kim SW, Kim YB, Kim SR, Park SW, Kang SW, Kwon OY and Yun EY (2011) A powerful uniquitous activity of Bombyx mori heat shock protein 70 promoter. Genes Genom. 33: 635–643.

    Article  CAS  Google Scholar 

  • Hirai M, Watanabe D and Chinzei Y (2000) A juvenile hormone-repressible transferrin-like protein from the bean bug, Riptortus clavatus: cDNA sequence analysis and protein identification during diapause and vitellogenesis. Arch. Insect Biochem. Physiol. 44: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Jamroz RC, Gasdaska JR, Bradfield JY and Law JH (1993) Transferrin in a cockroach: molecular cloning, characterization and suppression by juvenile hormone. Proc. Natl. Acad. Sci. U.S.A. 90: 1320–1324.

    Article  PubMed  CAS  Google Scholar 

  • Kucharski R and Maleszka R (2003) Transcriptional profiling reveals multifunctional roles for transferrin in the honeybee, Apis mellifera. J. Insect Sci. 27: 1–8.

    Google Scholar 

  • Kurama T, Kurata S and Natori S (1995) Molecular characterization of an insect transferrin and its selective incorporation into eggs during oogenesis. Eur. J. Biochem. 228: 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lambert LA, Perri H and Meehan TJ (2005) Evolution of duplications in the transferrin family of proteins. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 140: 11–25.

    Article  PubMed  Google Scholar 

  • Makey DG and Seal US (1976) The detection of four molecular forms of human transferrin during the iron binding process. Biochim. Biophys. Acta 453: 250–256.

    Article  PubMed  CAS  Google Scholar 

  • Muralidhara BK and Hirose M (2000) Anion-mediated iron release from transferrins. The kinetic and mechanistic model for N-lobe of ovotransferrin. J. Biol. Chem. 275: 12463–12469.

    Article  PubMed  CAS  Google Scholar 

  • Nichol H, Law JH and Winzerling JJ (2002) Iron metabolism in insects. Annu. Rev. Entomol. 47: 535–559.

    Article  PubMed  CAS  Google Scholar 

  • Ross DC, Egan TJ and Purves LR (1995) Periodate modification of human serum transferrin Fe(III)-binding sites. Inhibition of carbonate insertion into Fe(III)- and Cu(II)-chelator-transferrin ternary complexes. J. Biol. Chem. 270: 12404–12410.

    PubMed  CAS  Google Scholar 

  • Saitou N and Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Schaeffer E, Lucero MA, Jeltsh JM, Py MC, Levin MK, Chambon P, Cohon GN and Zakin MM (1987) Complete structure of the human transferrin gene. Comparison with analogous chicken gene and human pseudogene. Gene 56: 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M and Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Thompson GJ, Crozier YC and Crozier RH (2003) Isolation and characterization of a termite transferrin gene up-regulated on infection. Insect Mol. Biol. 12:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Yoshiga T, Hernandez VP, Fallon AM and Law JH (1997) Mosquito transferrin, an acute-phase protein that is up-regulated upon infection. Proc. Natl. Acad. Sci. U.S.A. 94: 12337–12342.

    Article  PubMed  CAS  Google Scholar 

  • Yun EY, Goo TW, Kim SW, Choi KH, Hwang JS, Kang SW and Kwon OY (2005) Galactosylation and sialylation of mammalian glycoproteins produced by baculovirus-mediated gene expression in insect cells. Biotechnol. Lett. 27: 1035–1039.

    Article  PubMed  CAS  Google Scholar 

  • Yun EY, Kang SW, Hwang JS, Goo TW, Kim SH, Jin BR, Kwon OY and Kim KY (1999) Molecular cloning and characterization of a cDNA encoding a transferrin homolog from Bombyx mori. Biol. Chem. 380, 1455–1459.

    Article  PubMed  CAS  Google Scholar 

  • Yun EY, Lee JK, Kwon OY, Hwang JS, Kim I, Kang SW, Lee WJ, Ding JL, You KH and Goo TW (2009) Bombyx mori transferrin: genomic structure, expression and antimicrobial activity of recombinant protein. Dev. Comp. Immunol. 33: 1064–1069.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Won Goo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, EY., Kwon, O.Y., Hwang, JS. et al. Molecular cloning and analysis of residues associated with iron binding of Spodoptera litura transferrin. Genes Genom 34, 689–694 (2012). https://doi.org/10.1007/s13258-012-0079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-012-0079-8

Keywords

Navigation