Skip to main content
Log in

Identification and characterization of transposable element-mediated chimeric transcripts from porcine Refseq and EST databases

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Transposable elements are mobile genomic sequences that comprise a large portion of mammalian genomes. The transposable element fusion phenomenon within porcine genes has not yet been reported; therefore, we investigated transposable element fusion genes in the Sus scrofa genome. Porcine transposable element-mediated chimeric transcripts were identified and characterized. Most transposable elements preferentially inserted themselves into an antisense orientation and into the 3’ end of porcine genes. The transposable element fusion gene between porcine mRNA and ERV class I, one of the LTR retrotransposons, was not detected. This data will be of great use to further studies focused on a better understanding of the biological function of porcine genes in relation to transposable elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyoshi DE, Denaro M, Zhu H, Greenstein JL, Banerjee P and Fishman JA (1998) Identification of a full-length cDNA for an endogenous retrovirus of miniature swine. J.Virol. 72: 4503–4507.

    PubMed  CAS  Google Scholar 

  • Almeida LM, Silva IT, Silva WA Jr, Castro JP, Riggs PK, Carareto CM and Amaral ME (2007) The contribution of transposable elements to Bos taurus gene structure. Gene 390: 180–189.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25: 25–29.

    CAS  Google Scholar 

  • Bae JH, Ahn K, Nam GH, Lee CE, Park KD, Lee HK, Cho BW and Kim HS (2011) Molecular Characterization of Alternative Transcripts of the Horse BMAL1 Gene. Zoolog. Sci. 28:671–675.

    Article  PubMed  CAS  Google Scholar 

  • Baltimore D (1985) Retroviruses and retrotransposons: the role of reverse transcription in shaping the eukaryotic genome. Cell 40: 481–482.

    Article  PubMed  CAS  Google Scholar 

  • Biemont C and Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443: 521–524.

    Article  PubMed  CAS  Google Scholar 

  • Capomaccio S, Verini-Supplizi A, Galla G, Vitulo N, Barcaccia G, Felicetti M, Silvestrelli M and Cappelli K (2010) Transcription of LINE-derived sequences in exercise-induced stress in horses. Anim. Genet. Suppl. 2: 23–27.

    Article  Google Scholar 

  • Cohen CJ, Lock WM and Mager DL (2009) Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448: 105–114.

    Article  PubMed  CAS  Google Scholar 

  • Cordaux R, Udit S, Batzer MA and Feschotte C (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc. Natl. Acad. Sci. USA 103: 8101–8106.

    Article  PubMed  CAS  Google Scholar 

  • Finnegen DJ, (1989) Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103–107

    Article  Google Scholar 

  • Gentles AJ, Wakefield MJ, Kohany O, Gu W, Batzer MA, Pollock DD and Jurka J (2007) Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res. 17: 992–1004.

    Article  PubMed  CAS  Google Scholar 

  • Humphray SJ, Scott CE, Clark R, Marron B, Bender C, Camm N, Davis J, Jenks A, Noon A, Patel M, et al. (2007) A high utility integrated map of the pig genome. Genome Biol. 8: R139.

    Article  PubMed  Google Scholar 

  • Klymiuk N, Müller M, Brem G and Aigner B (2006) Phylogeny, recombination and expression of porcine endogenous retrovirus gamma2 nucleotide sequences. J. Gen. Virol. 87: 977–986.

    Article  PubMed  CAS  Google Scholar 

  • Krane DE and Hardison RC (1990) Short interspersed repeats in rabbit DNA can provide functional polyadenylation signals. Mol. Biol. Evol. 7: 1–8.

    PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    Article  PubMed  CAS  Google Scholar 

  • Lorenc A and Makalowski W (2003) Transposable elements and vertebrate protein diversity. Genetica 118: 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Makalowski W, Mitchell GA and Labuda D (1994) Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet. 10: 188–193.

    Article  PubMed  CAS  Google Scholar 

  • Medstrand P, van de Lagemaat LN and Mager DL (2002) Retroelement distributions in the human genome: variations associated with age and proximity to genes. Genome Res. 12: 1483–1495.

    Article  PubMed  CAS  Google Scholar 

  • Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA, et al. (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299: 411–414.

    Article  PubMed  CAS  Google Scholar 

  • Piriyapongsa J, Polavarapu N, Borodovsky M and McDonald J (2007) Exonization of the LTR transposable elements in human genome. BMC Genomics 8: 291.

    Article  PubMed  Google Scholar 

  • Platt JL (2000) Hyperacute rejection: fact or fancy. Transplantation 69: 1034–1035.

    Article  PubMed  CAS  Google Scholar 

  • Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y and Hume DA (2007) Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet. 8: 424–436.

    Article  PubMed  CAS  Google Scholar 

  • Sela N, Kim E, and Ast G (2010) The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates. Genome Biol. 11: R59.

    Article  PubMed  Google Scholar 

  • Singer SS, Mannel DN, Hehlgans T, Brosius J, and Schmitz J (2004) From “junk” to gene: curriculum vitae of a primate receptor isoform gene. J. Mol. Biol. 341: 883–886.

    Article  PubMed  CAS  Google Scholar 

  • Smit AF (1999) Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9: 657–663.

    Article  PubMed  CAS  Google Scholar 

  • van de Lagemaat LN, Landry JR, Mager DL and Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19: 530–536.

    Article  PubMed  Google Scholar 

  • Varagona MJ, Purugganan M and Wessler SR (1992) Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 4: 811–820.

    PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.

    Article  PubMed  CAS  Google Scholar 

  • Wiedmann RT, Nonneman DJ and Keele JW (2006) Novel porcine repetitive elements. BMCGenomics 7: 304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heui-Soo Kim.

Additional information

H.-S Ha and J.-W. Moon contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, HS., Moon, JW., Gim, JA. et al. Identification and characterization of transposable element-mediated chimeric transcripts from porcine Refseq and EST databases. Genes Genom 34, 409–414 (2012). https://doi.org/10.1007/s13258-011-0212-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-011-0212-0

Keywords

Navigation