Skip to main content
Log in

Identification and characterization of full-length vps29 gene in five mammalian species

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Retromer is a heteropentameric complex associated with retrograde transport of cargo protein from the endosome to the trans-Golgi network. The mammalian retromer complex consists of three vps genes (vps26, vps35, and vps29) and two sorting nexin genes (snx1 and snx2). Previous studies had reported the protein sorting functions of retromer in the intracellular compartment. However, individual genes of retromer complex have not yet been fully characterized. In this study, we identified full-length vps29 gene in human, crab-eating macaque, mouse, rat, and dog species. Total forty-four novel transcripts of vps29, including two actively expressed major transcripts, were identified by 5′- and 3′-RACE. Comparative analysis indicated that functionally important sites of the vps29 gene were well conserved in the eukaryotic genome. However, two major transcript variants were occurred in the vertebrate genome only. From our results, we assumed that there are many different transcripts variants of vps29 gene and specifically two major transcripts could play important roles in the protein sorting mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arighi CN, Hartnell LM, Aguilar RC, Haft CR and Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165: 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Attar N and Cullen PJ (2010) The retromer complex. Adv. Enzyme Regul. 50: 216–236.

    Article  PubMed  Google Scholar 

  • Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, Yan D, Selva EM and Lin X (2008) The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev. Cell 14: 120–131.

    Article  PubMed  CAS  Google Scholar 

  • Bujny MV, Popoff V, Johannes L and Cullen PJ (2007) The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J. Cell Sci. 120: 2010–2021.

    Article  PubMed  CAS  Google Scholar 

  • Carlton J, Bujny M, Peter BJ, Oorschot, VM, Rutherford A, Mellor H, Klumperman J, McMahon HT and Cullen PJ (2004) Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr. Biol. 14: 1791–1800.

    Article  PubMed  CAS  Google Scholar 

  • Collins BM (2008) The structure and function of the retromer protein complex. Traffic 9: 1811–1822.

    Article  PubMed  CAS  Google Scholar 

  • Edgar AJ and Polak JM (2000) Human homologues of yeast vacuolar protein sorting 29 and 35. Biochem. Biophys. Res. Commun. 277: 622–630.

    Article  PubMed  CAS  Google Scholar 

  • Haft CR, de la Luz Sierra M, Barr VA, Haft DH and Taylor SI (1998) Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol. Cell Biol. 18: 7278–7287.

    PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98.

    CAS  Google Scholar 

  • Kerr MC, Bennetts JS, Simpson F, Thomas EC, Flegg C, Gleeson PA, Wicking C and Teasdale RD (2005) A novel mammalian retromer component, Vps26B. Traffic 6: 991–1001.

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Lee JW, Baek DC, Lee SR, Kim MS, Kim SH, Imakawa K and Chang KT (2008) Identification of novel retromer complexes in the mouse testis. Biochem. Biophys. Res. Commun. 375: 16–21.

    Article  PubMed  CAS  Google Scholar 

  • Michaux G and Le Borqne R (2009) Sorting, recycling and WNT signaling: Wntless and retromer functions. Med. Sci. 25: 617–621.

    Google Scholar 

  • Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho L, Kreber R, Honig LS, Ganetzky B, Duff K, Arancio O and Small SA (2008) Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proc. Natl. Acad. Sci. USA. 105: 7327–7332.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen MS, Gustafsen C, Madsen C, Nyengaard JR, Hermey G, Bakke O, Mari M, Schu P, Pohlmann R, Dennes A and Petersen CM (2007) Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA. Mol. Cell Biol. 27: 6842–6851.

    Article  PubMed  CAS  Google Scholar 

  • Rothman JH and Stevens TH (1986) Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 47: 1041–1051.

    Article  PubMed  CAS  Google Scholar 

  • Seaman MN (2005) Recycle your receptors with retromer. Trends Cell Biol. 15: 68–75.

    Article  PubMed  CAS  Google Scholar 

  • Seaman MN, Marcusson EG, Cereghino JL and Emr SD (1997) Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J. Cell Biol. 137: 79–92.

    Article  PubMed  CAS  Google Scholar 

  • Seaman MN, McCaffery JM and Emr SD (1998) A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142: 665–681.

    Article  PubMed  CAS  Google Scholar 

  • Small SA (2008) Retromer sorting: a pathogenic pathway in late-onset Alzheimer disease. Arch. Neurol. 65: 323–328.

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgins DG and Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Utskarpen A, Slagsvold HH, Dyve AV, Skånland SS and Sandvig K (2007) SNX1 and SNX2 mediate retrograde transport of Shiga toxin. Biochem. Biophys. Res. Commun. 358: 566–570.

    Article  PubMed  CAS  Google Scholar 

  • van Weering JR, Verkade P and Cullen PJ (2010) SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting. Semin. Cell Dev. Biol. 21: 371–380.

    Article  PubMed  Google Scholar 

  • Vergés M, Luton F, Gruber C, Tiemann F, Reinders LG, Huang L, Burlingame AL, Haft CR and Mostov KE (2004) The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat. Cell Biol. 6: 763–769.

    Article  PubMed  Google Scholar 

  • Wang D, Guo M, Liang Z, Fan J, Zhu Z, Zang J, Zhu Z, Li X, Teng M, Niu L, Dong Y and Liu P (2005) Crystal structure of human vacuolar protein sorting protein 29 reveals a phosphodiesterase/nuclease-like fold and two protein-protein interaction sites. J. Biol. Chem. 280: 22962–22967.

    Article  PubMed  CAS  Google Scholar 

  • Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ and Cullen PJ (2007) A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J. Cell Sci. 120: 45–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Tae Chang.

Additional information

Y.-H. Kim, S.-J. Park, and J.-H. Huh contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YH., Park, SJ., Huh, JW. et al. Identification and characterization of full-length vps29 gene in five mammalian species. Genes Genom 33, 505–512 (2011). https://doi.org/10.1007/s13258-011-0066-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-011-0066-5

Keywords

Navigation