Skip to main content
Log in

Three positive regulators of leaf senescence in Arabidopsis, ORE1, ORE3 and ORE9, play roles in crosstalk among multiple hormone-mediated senescence pathways

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Leaf senescence is a developmentally programmed event, but the initiation and progression of leaf senescence are affected by a range of plant hormones including abscisic acid (ABA), ethylene and methyl jasmonate (MeJA). To investigate plant hormone crosstalk during leaf senescence, hormone-induced senescence phenotypes were analyzed in three leaf senescence mutants [ore1 (oresara1), ore3 and ore9] showing delayed senescence phenotypes in age-dependent and dark-induced senescence. The ore mutants exhibited delayed leaf senescence phenotypes following treatment with ABA, ACC (aminocyclo-propane-1-carboxylic acid) or MeJA. After each hormone treatment, the photochemical efficiency of photosystem II and chlorophyll content were significantly higher in the ore mutant leaves than in the wild-type leaves. The expression of CAB2 and SEN4 in the wild-type was rapidly altered following each hormone treatment. However, the decrease in CAB2 expression and the induction of SEN4 expression in the mutants were less affected by ABA, ACC or MeJA treatment. It is suggested that ORE1, ORE3 and ORE9 are required for the proper progression of leaf senescence mediated by ABA, ethylene and MeJA. This implies that ORE1, ORE3 and ORE9 may be linked to the crosstalk among senescence pathways induced by ABA, ethylene and MeJA, as well as age and darkness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S and Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152.

    Article  PubMed  CAS  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Köhler B and Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J. 62:250–264.

    Article  PubMed  CAS  Google Scholar 

  • Beaudoin N, Serizet C, Gosti F and Giraudat J (2000) Interactions between abscisic acid and ethylene signalling cascades. Plant Cell 12:1103–1115.

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE and Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111.

    PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T and Pink D (2003) The molecular analysis of leaf senescence — a genomics approach. Plant Biotech. J. 1: 3–22.

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K and Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 42:567–585.

    Article  PubMed  CAS  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY and Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol. 143:707–719.

    Article  PubMed  CAS  Google Scholar 

  • Chou CM and Kao CH (1992) Methyl jasmonate, calcium, and leaf senescence in rice. Plant Physiol. 99:1693–1694.

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA and Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:355–381.

    Article  PubMed  CAS  Google Scholar 

  • Draper J (1997) Salicylate, superoxide synthesis and cell suicide in plant defence. Trends Plant Sci. 2:162–165.

    Article  Google Scholar 

  • Gan S and Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988.

    Article  PubMed  CAS  Google Scholar 

  • Gan S (2007) Nutrient remobilization during leaf development. In senescence processes in plants in Fischer AM, eds., Blackwell publishing, Oxford, Uk, pp. 87–107.

    Chapter  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, et al. (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194.

    Article  PubMed  CAS  Google Scholar 

  • Grbic V and Bleecker AB (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J. 8:595–602.

    Article  CAS  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS and Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44:903–916.

    Article  PubMed  CAS  Google Scholar 

  • Hensel L, Grbic V, Baumgarten DA and Bleecker AB (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5:553–564.

    PubMed  CAS  Google Scholar 

  • Ivanchenko MG, Napsucialy-Mendivil S and Dubrovsky JG (2010) Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana. Plant J. 64:740–752.

    Article  PubMed  CAS  Google Scholar 

  • John I, Drake R, Farrell A, Cooper W, Lee P, Horton P and Grierson D (1995) Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants: molecular and physiological analysis. Plant J. 7:483–490.

    Article  CAS  Google Scholar 

  • Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG and Hwang I (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc. Natl. Acad. Sci. USA 103: 814–819.

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D and Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057.

    Article  PubMed  CAS  Google Scholar 

  • Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K and Sakakibara H (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 10:3152–3169.

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 18: 350–382.

    Article  Google Scholar 

  • Lim PO, Kim HJ and Nam HG (2007) Leaf senescence. Annu. Rev. Plant Biol. 58: 115–136.

    Article  PubMed  CAS  Google Scholar 

  • Lin JF and Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J. 39:612–628.

    Article  PubMed  CAS  Google Scholar 

  • Lohman KN, Gan S, John MC and Amasino RM (1994) Molecular analysis of natural senescence in Arabidopsis thaliana. Physiol. Plant. 92:322–328.

    Article  CAS  Google Scholar 

  • Lund ST, Stall RE and Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371–382.

    PubMed  CAS  Google Scholar 

  • Maslenkova LT, Zanev Y and Popova LP (1990) Oxygen-evolving activity of thylakoids from barley plants cultivated on different concentrations of jasmonic acid. Plant Physiol. 93:1316–1320.

    Article  PubMed  CAS  Google Scholar 

  • McCabe MS, Garratt LC, Schepers F, Jordi WJ, Stoopen GM, Davelaar E, van Rhijn JH, Power JB and Davey MR (2001) Effects of P(SAG12)-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol. 127:505–516.

    Article  PubMed  CAS  Google Scholar 

  • Nam HG (1997) Molecular genetic analysis of leaf senescence. Curr. Opin. Biotechnol. 8:200–207.

    Article  PubMed  CAS  Google Scholar 

  • Noodén LD (1988) The phenomenon of senescence and aging. In Senescence and aging in plants. Noodén LD and Leopold AC, eds., Academic Press, San Diego, CA, pp. 2–50.

    Google Scholar 

  • Oh SA, Park JH, Lee GI, Paek KH, Park SK and Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J. 12:527–535.

    Article  PubMed  CAS  Google Scholar 

  • Parthier B (1990) Jasmonates: Hormonal regulators or stress factors in leaf senescence. J. Plant Growth Regul. 9: 57–63.

    Article  CAS  Google Scholar 

  • Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F and Hoth S (2009) Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. Plant J. 59:39–51.

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Lee H, Creelman RA, Mullet JE and Davis KR (2000) Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12:1633–1646.

    PubMed  CAS  Google Scholar 

  • Reymond P and Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Cur. Opin. Plant Biol. 1:404–411.

    Article  CAS  Google Scholar 

  • Schaller F (2001) Enzymes of the biosynthesis of octadecanoid-derived signalling molecules. J. Exp. Bot. 52:11–23.

    Article  PubMed  CAS  Google Scholar 

  • Schippers JH, Nunes-Nesi A, Apetrei R, Hille J, Fernie AR and Dijkwel PP (2008) The Arabidopsis onset of leaf death5 mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing. Plant Cell 20:2909–2925.

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Luong P and Huq E (2007) The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol. 145:1471–1483.

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Su W and Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. U S A. 89:6837–6840.

    Article  PubMed  CAS  Google Scholar 

  • Stirnberg P, van De Sande K and Leyser HM (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141.

    PubMed  CAS  Google Scholar 

  • Subbiah V and Reddy KJ (2010) Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. J Biosci. 35:451–458.

    Article  PubMed  CAS  Google Scholar 

  • Turner JG, Ellis C and Devoto A (2002) The jasmonate signal pathway. Plant Cell 14Suppl:S153–164.

    PubMed  CAS  Google Scholar 

  • Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, et al., (2007) Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol. Biol. 64:633–644.

    Article  PubMed  CAS  Google Scholar 

  • Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK and Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790.

    PubMed  CAS  Google Scholar 

  • Woo HR, Kim JH, Nam HG and Lim PO (2004) The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. Plant Cell Physiol. 45:923–932.

    Article  PubMed  CAS  Google Scholar 

  • Xiao S and Chye ML (2010) The Arabidopsis thaliana ACBP3 regulates leaf senescence by modulating phospholipid metabolism and ATG8 stability. Autophagy 6:802–804.

    Article  PubMed  Google Scholar 

  • Yang J, Zhang J, Wang Z, Zhu Q and Liu L (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ. 26:1621–1631.

    Article  CAS  Google Scholar 

  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr. Opin. Plant Biol. 6:79–84.

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD and Creelman RA (1988) Metabolism and physiology of abscisic acid. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39:439–473.

    Article  CAS  Google Scholar 

  • Zimmermann P and Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol. Biol. Lett. 10:515–534.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyung Min Chung or Hye Ryun Woo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Chung, K.M. & Woo, H.R. Three positive regulators of leaf senescence in Arabidopsis, ORE1, ORE3 and ORE9, play roles in crosstalk among multiple hormone-mediated senescence pathways. Genes Genom 33, 373–381 (2011). https://doi.org/10.1007/s13258-011-0044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-011-0044-y

Keywords

Navigation