Skip to main content
Log in

Analysis of genetic diversity and relationships among waxy maize inbred lines in Korea using SSR markers

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Information regarding the genetic diversity and genetic relationships among elite inbred lines is necessary to improve new cultivars in maize breeding programs. In this study, genetic diversity and genetic relationships were investigated among 84 waxy maize inbred lines using 50 SSR markers. A total of 269 alleles were identified at all the loci with an average of 5.38 and a range between 2 and 13 alleles per locus. The gene diversity values varied from 0.383 to 0.923 with an average of 0.641. The cluster tree generated using the described SSR markers recognized two major groups at 32% genetic similarity. Group I included 33 inbred lines while group II included 51 inbred lines. The clustering patterns of most of the waxy maize inbred lines did not clearly agree with their source, pedigree or geographic location. The average GS among all inbred lines was 35.7 ± 10.8. Analysis of waxy maize inbred lines collected from Korea and China at 50 SSR loci revealed higher values of average number of alleles (4.9) and gene diversity (0.638) in Korean inbred lines as compared to Chinese inbred lines (3.5 and 0.563, respectively). The information obtained from the present studies would be very useful for maize breeding programs in Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akagi H, Yokozaki Y, Inagaki A and Fujimura T (1997) Highly polymorphic microsatellites of rice consist of AT repeats, and a classification of closely related cultivars with these microsatellite loci. Theor. Appl. Genet. 94: 61–67.

    Article  CAS  PubMed  Google Scholar 

  • Ajmone-Marsan, Castiglioni P, Fusari F, Kuiper M and Motto M (1998) Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96: 219–227.

    Article  Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD and Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36: 181–186.

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood J and Hicks JB (1983) A simple and rapid method for plant DNA preparation. Version II. Plant Mol. Biol. Rep. 1: 19–21.

    Article  CAS  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26: 297–302.

    Article  Google Scholar 

  • Enoki H, Sato H and Koinuma K (2002) SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor. Appl. Genet. 104: 1270–1277.

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff N, Wessler S and Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35: 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Gethi JG, Labate JA, Lamkey KR, Smith ME and Kresoovich S (2002) SSR variation in important U.S. maize inbred lines. Crop Sci. 42: 951–957.

    Article  CAS  Google Scholar 

  • Hallauer AR, Russell WA and Lamkey KR (1988) Corn breeding. pp 463–564. In G.F. Sprague and JW Dudley (ed). Corn and Corn Improvement. 3rd ed. Agron., Monogr. 18. Madison, WI, USA.

  • Huang XQ, Börner A, Röder MS and Ganal MW (2002) Assessing genetic diversity of wheat (Triticum asetivum L.) germplasm using microsatellite markers. Theor. Appl. Genet. 105: 699–707.

    Article  CAS  PubMed  Google Scholar 

  • Klösgen RB, Gierl A, Schwarz-Sommer Z, Saedler H (1986) Molecular analysis of the waxy locus of Zea mays. Mol. Gen. Genet. 203: 237–244.

    Article  Google Scholar 

  • Lanza LLB, de Souza Jr CL, Ottoboni LMM, Vieira MLC and de Souza AP (1997) Genetic distance of inbred lines and prediction of maize single-cross performance using RAPD markers. Theor. Appl. Genet. 94: 1023–1030.

    Article  CAS  Google Scholar 

  • Le Clerc V, Bazante F, Baril C, Guiard J and Zhang D (2005) Assessing temporal changes in genetic diversity of maize varieties using microsatellite markers. Theor. Appl. Genet. 110: 294–302.

    Article  PubMed  Google Scholar 

  • Lu H and Bernardo R (2001) Molecular marker diversity among current and historical maize inbreds. Theor. Appl. Genet. 103: 613–617.

    Article  CAS  Google Scholar 

  • Melchinger AE, Lee M, Lamkey KR, Hallauer AR and Woodman WL (1990) Genetic diversity for restriction fragment length polymorphism and heterosis for two diallel sets of maize inbreds. Theor. Appl. Genet. 80: 488–496.

    Article  Google Scholar 

  • Melchinger AE, Boppenmmaier J, Dhillon BS, Pollmer WG and Herrmann RG (1992) Genetic diversity for RFLPs in European maize inbreds: II. Relation to performance of hybrids within versus between heterotic groups for forage traits. Theor. Appl. Genet. 84: 672–681.

    Article  Google Scholar 

  • Messmer MM, Melchinger AE, Herrmann RG and Boppenmaier J (1993) Relationships among early European maize inbreds. II. Comparison of pedigree and RFLP data. Crop Sci. 33: 944–950.

    Article  Google Scholar 

  • Moeller DA and Schaal BA (1999) Genetic relationships among Native American maize accessions of the great plains assessed by RAPDs. Theor. Appl. Genet. 99: 1061–1067.

    Article  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70: 3321–3323.

    Article  CAS  PubMed  Google Scholar 

  • Nelson OE and Rines HW (1962) The enzymatic deficiency in the waxy mutant of maize. Biochem. Biophys. Res. Commun. 9: 297–300.

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Park JY, Park KJ, Lee JK (2008) Genetic Diversity Among Waxy Corn Accessions in Korea Revealed by Microsatellite Markers. Korean J. Breed. Sci. 40: 250–257.

    Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSR, and AFLPs. Theor. Appl. Genet. 97: 1248–1255.

    Article  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S and Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225–238.

    Article  CAS  Google Scholar 

  • Prasad M, Varshney RK, Roy JK, Balyan HS and Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor. Appl. Genet. 100: 584–592.

    CAS  Google Scholar 

  • Rafalski JA, Vogel JM, Morgante M, Powell W, Andre C and Tingey SV (1996) Generating and using DNA markers in plants. In: Birren B, Lai E (eds), Non-mammalian genomic analysis. A practical guide. Academic Press, San Diego, pp 75–134.

    Google Scholar 

  • Reif JC, Warburton ML, Xia XC, Hoisington DA, Crossa J, Taba S, Muminovic J, Bohn M, Frisch M and Melchinger AE (2006) Groping of accessions of Mexican races of maize revisited with SSR markers. Theor. Appl. Genet. 113: 177–185.

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: Numerical taxonomy and multivariate analysis system. Version: 2.1. Exeter Software, New York.

    Google Scholar 

  • Senior ML, Murphy JP, Goodman MM and Stuber C (1998) Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci. 38: 1088–1098.

    Article  Google Scholar 

  • Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S and Ziegler J (1997) An evaluation of the utility of SSR loci as molecular marker in maize (Zea mays L.): comparison with RFLPs and pedigree. Theor. Appl. Genet. 95: 163–173.

    Article  CAS  Google Scholar 

  • Sprague GF, Brimhall B and Hixon RM (1943) Some effects of the waxy gene in corn on properties of the endosperm starch. J. Am. Soc. Agron. 35: 817–822.

    Google Scholar 

  • Taramino G and Tingey S (1996) Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277–287.

    Article  CAS  PubMed  Google Scholar 

  • Warburton ML, Xianchun X, Crossa J, Franco J, Melchinger AE, Frisch M, Bohn M and Hoisington D (2002) Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci. 42: 1832–1840.

    Article  Google Scholar 

  • Xia XC, Reif JC, Melchinger AE, Frisch M, Hoisington DA, Beck K, Pixley K and Warburton ML (2005) Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: II. Subtropical, tropical midaltitude, and highland maize inbred lines and their relationships with elite U.S. and European maize. Crop Sci. 45: 2573–2582.

    Article  CAS  Google Scholar 

  • Xie C, Warburton M, Li M, Li X, Xiao M, Hao Z and Zhang S (2008) An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol. Breeding 21: 407–418.

    Article  Google Scholar 

  • Zhao W, Chung JW, Ma KH, Kim TS, Kim SM, Shin DI, Kim CH, Koo HM, Park YJ (2009) Analysis of Genetic Diversity and Population Structure of Rice Cultivars from Korea, China and Japan using SSR Markers. GENES & GENOMICS 31: 283–292.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Kyong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sa, K.J., Park, J.Y., Park, K.J. et al. Analysis of genetic diversity and relationships among waxy maize inbred lines in Korea using SSR markers. Genes Genom 32, 375–384 (2010). https://doi.org/10.1007/s13258-010-0025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-010-0025-6

Keywords

Navigation