Skip to main content
Log in

Comparative genomic analysis of mitogen activated protein kinase gene family in grapevine

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Mitogen activated protein kinases (MAPKs) are important proteins involved in the signal transduction of extracellular information to intracellular targets, and play a crucial role in the response to biotic and abiotic stresses. Although Arabidopsis MAPKs are used for identification of the putative MAPKs in higher plants, no grapevine MAPK gene nomenclature has yet been appeared in the literature. In this study, we have identified 12 members of grapevine MAPK gene (VvMPK) family via In-silico analysis of current grapevine genome database. The structural comparison of 12 VvMPKs through the analysis of chromosome locations, sequence annotation and paralogous gene pair indicated that VvMPKs have evolved by segmental duplication, rather than by tandem amplification. Although further functional analysis of VvMPKs through in vivo and in vivo experiments will be required, our study provides the basis for future research on the diverse signaling pathways medicated by MAPKs in grapevine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahlfors R, Macioszek V, Rudd J, Brosche M, Schlichting R, Scheel D and KangasJarvi J (2004) Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J. 40: 512–522.

    Article  CAS  PubMed  Google Scholar 

  • Blanc G and Wolfe KH (2004) Widespread paleopolyploidy in the model plant species interred from age distributions of duplicate genes. Plant Cell 16: 1667–1678.

    Article  CAS  PubMed  Google Scholar 

  • Bogre L, Ligterink W, Meskiene L, Barker PJ, Heberle-Bors E, Huskisson NS and Hirt H (1997) Wounding induces the rapid and transient activation of a specific MAPK pathway. Plant Cell 9: 75–83.

    Article  PubMed  Google Scholar 

  • Dahan J, Pichereaux C, Rossignol M, Blanc S, Wendehenne D, Pugin A and Bourque S (2009) Activation of a nuclear-localized SIPK in tobacco cells challenged by cryptogein, an elicitor of plant defence reactions. Biochem. J. 418: 191–200.

    Article  CAS  PubMed  Google Scholar 

  • Davis R (2000) Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Decroocq-Ferrant V, Decrooq S, van Went J, Schmidt E and Kreis M (1995) A homologue of the MAP/ERK family of protein kinase genes is expressed in vegetative and in female reproductive organs of petunia hybrida. PlantMol. Biol. 27: 339–350.

    CAS  Google Scholar 

  • Doddapaneni H, Lin H, Walker MA, Yao J and Civerolo EL (2008) VitisExpDB: A database resource for grape functional genomics. BMC Plant Biol. 8: 23.

    Article  PubMed  Google Scholar 

  • Fu SF, Chou WC, Huang DD and Hung HJ (2002) Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMPK4, in response to environmental stresses. Plant Cell Physiol. 43: 958–963.

    Article  CAS  PubMed  Google Scholar 

  • Gardy JL and Brinkman FSL (2006) Methods for predicting bacterial protein subcellular localization. Nature Rev. Microbiol. 4: 741–751.

    Article  CAS  Google Scholar 

  • Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H, Soyano T, Sasabe M, Machida Y and Mitsuhara I et al. (2005) A Mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol. 46: 1902–1914.

    Article  CAS  PubMed  Google Scholar 

  • Hamel LP, Nicole M, Sritubtim S, Morency M, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D and Lee J et al. (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci. 11: 192–198.

    Article  CAS  PubMed  Google Scholar 

  • Holley SR, Yalamanchili RD, Moura DS, Ryan CA and Stratmann JW (2003) Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in Lycopersicon peruvianum suspension-cultured cells. Plant Physiol. 132: 1728–1738.

    Article  CAS  PubMed  Google Scholar 

  • Huttly AK and Phillips AL (1995) Gibberellin-regulated expression in oat aleurone cells of two kinases that show homology to MAP kinase and a ribosomal protein kinase. Plant Mol. Biol. 27: 1043–1052.

    Article  CAS  PubMed  Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS and Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway in activated by cold and drought. Proc. Natl. Acad. Sci.: USA 93: 1127–11278.

    Article  Google Scholar 

  • Jonak C, Ligterink W and Hirt H (1999) MAP kinases in plant signal transduction. Cel. and Mol. Life Sci. 55: 204–213.

    Article  CAS  Google Scholar 

  • Knetsch MLW, Wang M, Snaar-Jagalska BE and Heimovaara-Dijkstra S (1996) Abscisic acid induces mitogen-activated protein kinase activation in barley aleuron protoplasts. Plant Cell 8: 1061–1067.

    Article  CAS  PubMed  Google Scholar 

  • Kyiakis JM and Avruch J (1996) Protein kinase cascades activated by stress and inflammatory cytokines. BioEssays 18: 567–577.

    Article  Google Scholar 

  • Lalle M, Visconti S, Marra M, Camoni L, Velasco R and Aducci P (2005) ZmMPK6, a novel maize MAP kinase that interacts with 14-3-3 proteins. Plant Mol. Biol. 59: 713–722.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Rudd JJ, Macioszek VK and Schell D (2004) Dynamic changes in the localization of MAPK cascades components controlling pathogenesis-related (PR) gene expression during innate immunity in parsley. J. Biol. Chem. 279: 22440–22448.

    Article  CAS  PubMed  Google Scholar 

  • Liu Q and Xue Q (2007) Computational identification and phylogenetic analysis of the MAPK gene family in Oryza sativa. Plant Physiol. Biochem. 45: 6–14.

    Article  CAS  PubMed  Google Scholar 

  • MAPK group (2002) Mitogen-activated protein kianse cascades in plants: a new nomenclature. Trends Plant Sci. 7: 301–308.

    Article  Google Scholar 

  • Matus JT, Aquea F and Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidosis genomes. BMC Plant Biol. 8: 83.

    Article  PubMed  Google Scholar 

  • Mayrose M, Bonshtien A and Sessa G (2004) LeMPK3 is a mitogen-activated protein kinase with dual specificity induced during tomato defense and wounding responses. J. Biol. Chem. 279: 14819–14827.

    Article  CAS  PubMed  Google Scholar 

  • Menke FLH, Kang H-G, Chen Z, Park JM, Kumar D and Klessig DF (2005) Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol. Plant-Microbe Interact. 18: 1027–1034.

    Article  CAS  PubMed  Google Scholar 

  • Mishra NS, Tuteja R and Tuteja H (2006) Signaling through MAP kinase networks in plant. Arch. Biochem. Biophy. 452: 55–68.

    Article  CAS  Google Scholar 

  • Nicole M-C, Hamel L-P, Morency M-J, Beaudoin N, Ellis BE and Seguin A (2006) MAP-ping genomic organization and organ-specific expression profiles of poplar MAP kinases and MAP kinase kinases. BMC Genomics 7: 223.

    Article  PubMed  Google Scholar 

  • Nonis A, Ruperti B, Pierasco A, Canaguier A, Adam-Blondon A-F, Gaspero GD and Vizzotto G (2008) Neutral invertases in grapevine and comparative analysis with Arabidopsis, poplar and rice. Planta 229: 129–142.

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ and Parker JE et al. (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103: 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  • Reyna NS and Yang Y (2006) Molecular analysis of the rice MAP kinase gene family in relat. to Magnaporthe grisea infection. Mol. Plant-Microbe Interactions 19: 530–540.

    Article  CAS  Google Scholar 

  • Romeis T, Piedras P, Zhang S, Klessig DF, Hirt Hand Jones JDG (1999) Rapid Avr9- and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11: 273–287.

    Article  CAS  PubMed  Google Scholar 

  • Šamaj J, Ovecka M, Hlavacka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D and Bogre L et al. (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. The EMBO J. 21: 3296–3306.

    Article  Google Scholar 

  • Scott MS, Calafell SJ, Thomas DY and Hallett MT (2005) Refining protein subcellular localization. PLoS Comput. Biol. 1(6): e66.

    Article  PubMed  Google Scholar 

  • Seo S, Okamato M, Seto H, Ishizuka K, Sano H and Ohashi Y (1995) Tobacco MAP kinase: A possible mediator in wound signal transduction pathways. Science 270: 1988–1992.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Han G, Wu H, Ye K, Tian Z, Wang J, Shi H, Ye M, Zou H and Huo K (2009) Casein kinase 2 interacts with human mitogen-and stress-activated peotein kinase MSK1 and phosphorylates it at multiple sites. BMB Rep. 42: 840–845.

    CAS  PubMed  Google Scholar 

  • Song F and Goodman RM (2002) OsBIMK1, a rice MAP kinase gene involved in diease resistance responses. Planta 215: 997–1005.

    Article  CAS  PubMed  Google Scholar 

  • Takezawa D (1999) Elicitor- and A23187-induced expression of WCK-1, a gene encoding mitogen- activated protein kinase in wheat. Plant Mol. Biol. 40: 921–933.

    Article  CAS  PubMed  Google Scholar 

  • Tanoue T, Adachi M, Moriguchi T and Nishida E (2000) A conserved docking motif in MAP kinases common to substrates activators and regulators. Nature Cell Biol. 2: 110–116.

    Article  CAS  PubMed  Google Scholar 

  • Tena G, Asai T, Chiu WL and Sheen J (2001) Plant mitogen activated protein kinase signaling cascades. Cur. Opin. Plant Biol. 4: 392–400.

    Article  CAS  Google Scholar 

  • The French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463–468.

    Article  Google Scholar 

  • Thompson JD, Higgins DG and Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S and Reid J et al. (2007) A high quality draft consensus sequence of the genome of heterozygous grapevine variety. PLoS ONE 12: e1326.

    Article  Google Scholar 

  • Vision TJ, Brown DG and Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290: 2114–2117.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zhang Y, Wang J, Wu X and Guo X (2007) Novel MAP kinase gene in cotton (Gossypium hirsutum L.), GhMAPK is involved in response to diverse environmental stresses. BMB Rep. 40: 325–332.

    CAS  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB and Johnson GL (1999) Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol. Rev. 79: 143–180.

    CAS  PubMed  Google Scholar 

  • Wolfe KH and Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713.

    Article  CAS  PubMed  Google Scholar 

  • Xiong L and Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15: 745–759.

    Article  CAS  PubMed  Google Scholar 

  • Yu C-S, Chen Y-C, Lu C-H and Hwang J-K (2006) Prediction of protein subcellular localization. Proteins 64: 643–651.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S and Klessig DF (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9: 809–824.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S and Liu Y (2001) Activation of salicylic acid-induced protein kinase, a mitogen activated protein kinase, induces multiple defense responses in tobacco. Plant Cell 13: 1877–1889.

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Liu Y, Yang T, Zhang L, Xu S, Xue L and An L (2006) Diverse signals converge at MAPK cascades in plant. Plant Physiol. Biochem. 44: 274–283.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Hyung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyun, T.K., Kim, JS., Kwon, SY. et al. Comparative genomic analysis of mitogen activated protein kinase gene family in grapevine. Genes Genom 32, 275–281 (2010). https://doi.org/10.1007/s13258-010-0010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-010-0010-0

Keywords