Skip to main content
Log in

On Information About Covariance Parameters in Gaussian Matérn Random Fields

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

The Matérn family of covariance functions is currently the most commonly used for the analysis of geostatistical data due to its ability to describe different smoothness behaviors. Yet, in many applications, the smoothness parameter is set at an arbitrary value. This practice is due partly to computational challenges faced when attempting to estimate all covariance parameters and partly to unqualified claims in the literature stating that geostatistical data have little or no information about the smoothness parameter. This work critically investigates this claim and shows it is not true in general. Specifically, it is shown that the information the data have about the correlation parameters varies substantially depending on the true model and sampling design and, in particular, the information about the smoothness parameter can be large, in some cases larger than the information about the range parameter. In light of these findings, we suggest to reassess the aforementioned practice and instead establish inferences from data-based estimates of both range and smoothness parameters, especially for strongly dependent non-smooth processes observed on irregular sampling designs. A data set of daily rainfall totals is used to motivate the discussion and gauge this common practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bachoc F (2014) Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes. J Multivar Anal 125:1–35

    Article  MathSciNet  Google Scholar 

  • Bevilacqua M, Faouzi T, Furrer R, Porcu E (2019) Estimation and prediction using generalized Wendland covariance functions under fixed domain asymptotics. Ann Stat 47:828–856

    Article  MathSciNet  Google Scholar 

  • Bose M, Hodges J, Banerjee S (2018) Toward a diagnostic toolkit for linear models with Gaussian-process distributed random effects. Biometrics 74:863–873

    Article  MathSciNet  Google Scholar 

  • Cressie N (1993) Statistics for Spatial Data (rev. ed.). Wiley

  • De Oliveira V, Kedem B, Short D (1997) Bayesian prediction of transformed Gaussian random fields. J Am Stat Assoc 92:1422–1433

    MathSciNet  MATH  Google Scholar 

  • Diggle P, Lophaven S (2006) Bayesian geostatistical design. Scand J Stat 33:53–64

    Article  MathSciNet  Google Scholar 

  • Diggle P, Ribeiro P (2007) Model-Based Geostatistics. Springer-Verlag

  • Gelfand A, Schliep E (2016) Spatial statistics and Gaussian processes: a beautiful marriage. Spat Stat 18:86–104

    Article  MathSciNet  Google Scholar 

  • Geoga C, Marin O, Schanen M, Stein M (2022) Fitting Matérn smoothness parameters using automatic differentiation. arXiv:2201.00090v1

  • Gradshteyn T, Ryzhik I (2000) Table of integrals, series, and products, 6th edn. Academic Press

  • Guttorp P, Gneiting T (2006) Studies in the history of probability and statistics XLIX on the Matérn correlation family. Biometrika 93:989–995

    Article  MathSciNet  Google Scholar 

  • Handcock M, Stein M (1993) A Bayesian analysis of kriging. Technometrics 35:403–410

    Article  Google Scholar 

  • Kaufman C, Shaby B (2013) The role of the range parameter for estimation and prediction in geostatistics. Biometrika 100:473–484

    Article  MathSciNet  Google Scholar 

  • Keener R (2010) Theoretical statistics: topics for a core course. Springer

  • Loh W-L (2015) Estimating the smoothness of a Gaussian random field from irregularly spaced data via higher-order quadratic variations. Ann Stat 43:2766–2794

    Article  MathSciNet  Google Scholar 

  • Loh W-L, Sun S, Wen J (2021) On fixed-domain asymptotics, parameter estimation and isotropic Gaussian random fields with Matérn covariance functions. Ann Stat 49:3127–3152

    Article  Google Scholar 

  • Matérn B (1986) Spatial Variation, 2nd edn. Springer-Verlag

  • McCullagh P, Clifford D (2006) Evidence for conformal invariance of crop yields. Proce Royal Soc A 462:2119–2143

    Article  Google Scholar 

  • McCulloch R (1989) Local model influence. J Am Stat Assoc 84:473–478

    Article  Google Scholar 

  • Papritz A, Schwierz C (2021)georob: Robust geostatistical analysis of spatial data. R package version 0.3-14

  • Seber G, Wild C (2003) Nonlinear Regression. Wiley

  • Stein M (1988) Asymptotically efficient prediction of a random field with a misspecified covariance function. Ann Stat 16:55–63

    Article  MathSciNet  Google Scholar 

  • Stein M (1990) Uniform asymptotic optimality of linear predictions of a random field using an incorrect second-order structure. Ann Stat 18:850–872

    Article  MathSciNet  Google Scholar 

  • Stein M (1993) A simple condition for asymptotic optimality of linear predictions of random fields. Stat Prob Lett 17:399–404

    Article  MathSciNet  Google Scholar 

  • Stein M (1999) Interpolation of spatial data: some theory for Kriging. Springer-Verlag

  • Steiner M, Houze R, Yuter S (1995) Climatological characterization of three-dimensional structure from operational radar and gauge data. J Appl Meteorol 34:1978–2007

    Article  Google Scholar 

  • Wu W-Y, Lim C (2016) Estimation of smoothness of a stationary Gaussian random field. Stat Sin 26:1729–1745

    MathSciNet  MATH  Google Scholar 

  • Wu W-Y, Lim C, Xiao Y (2013) Tail estimation of the spectral density for a stationary Gaussian random field. J Multivar Anal 116:74–91

    Article  MathSciNet  Google Scholar 

  • Zhang H (2004) Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J Am Stat Assoc 99:250–261

    Article  MathSciNet  Google Scholar 

  • Zhu Z, Stein M (2005) Spatial sampling design for parameter estimation of the covariance function. J Stat Plan Inference 134:583–603

    Article  MathSciNet  Google Scholar 

  • Zhu Z, Stein M (2006) Spatial sampling design for prediction with estimated parameters. J Agric Biol Environ Stat 11:24–44

    Article  Google Scholar 

  • Zhu Z, Zhang H (2006) Spatial sampling design under the infill asymptotic framework. Environmetrics 17:323–337

    Article  MathSciNet  Google Scholar 

  • Zimmerman D (2006) Optimal network design for spatial prediction, covariance parameter estimation, and empirical prediction. Environmetrics 17:635–652

    Article  MathSciNet  Google Scholar 

  • Zimmerman D (2010) Likelihood-Based Methods. In: Gelfand AE, Diggle PJ, Fuentes M, Guttorp P (eds) Handbook of Spatial Statistics. CRC Press, Boca Raton, pp 45–56

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank the Associate Editor and three anonymous reviewers for their insightful comments and suggestions that lead to an improved article. We also thank Eric Slud for stimulating conversations and feedback in the early stages of this research. Victor De Oliveira was partially supported by the U.S. National Science Foundation grant DMS–2113375. Zifei Han was supported by the Fundamental Research Funds for the Central Universities, China in UIBE (CXTD11-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zifei Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Derivation of Identities ( 4.6 ) and ( 4.7 )

To derive (4.6), write the Matérn correlation function as \(K_{\varvec{\varvec{\vartheta }}}(r) = c(\nu ) b(\vartheta )^{\nu } {\mathcal {K}}_{\nu }(b(\vartheta ))\), where \(c(\nu ) := {2^{1 - \nu }}/{\Gamma (\nu )}\) and \(b(\vartheta ) := {2r\sqrt{\nu }}/{\vartheta } \). Then by direct differentiation

$$\begin{aligned} \frac{\partial }{\partial \vartheta } K_{\varvec{\vartheta }}(r)&= c(\nu ) \Big ( \nu b(\vartheta )^{\nu - 1} b'(\vartheta ) {\mathcal {K}}_{\nu }(b(\vartheta )) + b(\vartheta )^{\nu } \frac{\partial }{\partial x} {\mathcal {K}}_{\nu }(x) \Big |_{x=b(\vartheta )} \!\! \cdot b'(\vartheta ) \Big ) \\&= c(\nu ) b(\vartheta )^{\nu - 1} b'(\vartheta ) \Big ( \nu {\mathcal {K}}_{\nu }(b(\vartheta )) -b(\vartheta )\Big [ {\mathcal {K}}_{\nu - 1}(b(\vartheta )) + \frac{\nu \vartheta }{2\sqrt{\nu } r} {\mathcal {K}}_{\nu }(b(\vartheta )) \Big ] \Big ) \\&= -\frac{c(\nu ) (2\sqrt{\nu }r)^{\nu }}{\vartheta ^{\nu + 1}} \Bigg ( \nu {\mathcal {K}}_{\nu }\Big ( \frac{2\sqrt{\nu }}{\vartheta } r \Big ) -\frac{2\sqrt{\nu }}{\vartheta } r {\mathcal {K}}_{\nu - 1}\Big ( \frac{2\sqrt{\nu }}{\vartheta } r \Big ) -\nu {\mathcal {K}}_{\nu }\Big ( \frac{2\sqrt{\nu }}{\vartheta } r \Big ) \Bigg ) \\&= \frac{4 \nu ^{\frac{\nu + 1}{2}} r^{\nu +1}}{\Gamma (\nu )\vartheta ^{\nu + 2}} {\mathcal {K}}_{\nu - 1}\Big ( \frac{2\sqrt{\nu }}{\vartheta } r \Big ) , \end{aligned}$$

where the second identity follows from (4.3).

To derive (4.7), write the Matérn correlation function as

$$\begin{aligned} K_{\varvec{\vartheta }}(r) = 2 e^{\nu \log ( 1/2)} (\Gamma (\nu ))^{-1} e^{\nu \log ( \frac{2r}{\vartheta } \sqrt{\nu })} {\mathcal {K}}_{\nu }\Big ( \frac{2r}{\vartheta } \sqrt{\nu } \Big ) , \end{aligned}$$

so after direct differentiation we have

$$\begin{aligned} \frac{\partial }{\partial \nu } K_{\varvec{\vartheta }}(r) = \left( \frac{1}{2} + \log \left( \frac{\sqrt{\nu }}{\vartheta } r\right) - \psi (\nu )\right) K_{\varvec{\vartheta }}(r) + h(\nu ) \frac{\partial }{\partial \nu } {\mathcal {K}}_{\nu }\Big ( \frac{2r}{\vartheta } \sqrt{\nu } \Big ) . \end{aligned}$$
(6.1)

Now, let \(G(x, y) := {\mathcal {K}}_{x}(y)\). Then

$$\begin{aligned} \frac{\partial }{\partial \nu } {\mathcal {K}}_{\nu }\Big ( \frac{2r}{\vartheta } \sqrt{\nu } \Big )&= \frac{\partial }{\partial \nu } G\Big (\nu , \frac{2r}{\vartheta } \sqrt{\nu }\Big ) \nonumber \\&= \frac{\partial }{\partial x} G(x, y) \Big |_{x=\nu , y=\frac{2r}{\vartheta } \sqrt{\nu }} +\; \frac{\partial }{\partial y} G(x, y) \Big |_{x=\nu , y=\frac{2r}{\vartheta } \sqrt{\nu }} \cdot \frac{r}{\vartheta \sqrt{\nu }} \nonumber \\&= \int _{0}^{\infty } t \sinh (\nu t) e^{-\frac{2r}{\vartheta } \sqrt{\nu } \cosh (t)} dt \nonumber \\&\quad -\frac{r}{\vartheta \sqrt{\nu }} \Bigg ( {\mathcal {K}}_{\nu - 1}\Big ( \frac{2r}{\vartheta } \sqrt{\nu } \Big ) + \frac{\vartheta \sqrt{\nu }}{2r} {\mathcal {K}}_{\nu }\Big ( \frac{2r}{\vartheta } \sqrt{\nu } \Big ) \Bigg ) \nonumber \\&= \int _{0}^{\infty } t \sinh (\nu t) e^{-\frac{2r}{\vartheta } \sqrt{\nu } \cosh (t)} dt -\frac{r}{\vartheta \sqrt{\nu }} {\mathcal {K}}_{\nu - 1}\Big ( \frac{2r}{\vartheta } \sqrt{\nu } \Big ) -\frac{1}{2} {\mathcal {K}}_{\nu }\Big ( \frac{2r}{\vartheta } \sqrt{\nu } \Big ) , \end{aligned}$$
(6.2)

where the third identity follows from (4.3) and (4.5). Finally, replacing (6.2) into (6.1), we get

$$\begin{aligned} \frac{\partial }{\partial \nu } K_{\varvec{\vartheta }}(r)&= \frac{1}{2}K_{\varvec{\vartheta }}(r) + \left( \log \left( \frac{\sqrt{\nu }}{\vartheta } r\right) - \psi (\nu )\right) K_{\varvec{\vartheta }}(r) + h(\nu ) \int _{0}^{\infty } t \sinh (\nu t) e^{-\frac{2r}{\vartheta } \sqrt{\nu } \cosh (t)} dt \\&\quad - h(\nu ) \frac{r}{\vartheta \sqrt{\nu }} {\mathcal {K}}_{\nu - 1}\Big ( \frac{2r}{\vartheta } \sqrt{\nu } \Big ) - \frac{1}{2} \underbrace{h(\nu ) {\mathcal {K}}_{\nu }\Big ( \frac{2r}{\vartheta } \sqrt{\nu } \Big )}_{K_{\varvec{\vartheta }}(r)} \\&= \left( \log \left( \frac{\sqrt{\nu }}{\vartheta } r\right) - \psi (\nu )\right) K_{\varvec{\vartheta }}(r) \\&\quad - h(\nu ) \Big (\frac{r}{\vartheta \sqrt{\nu }} {\mathcal {K}}_{\nu - 1}\Big ( \frac{2r}{\vartheta } \sqrt{\nu } \Big ) - \int _{0}^{\infty } t \sinh (\nu t) e^{-\frac{2r}{\vartheta } \sqrt{\nu } \cosh (t)} dt\Big ) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Oliveira, V., Han, Z. On Information About Covariance Parameters in Gaussian Matérn Random Fields. JABES 27, 690–712 (2022). https://doi.org/10.1007/s13253-022-00510-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-022-00510-5

Keywords

Navigation