Skip to main content
Log in

Spatial Generalized Linear Models with Non-Gaussian Translation Processes

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

It is not generally feasible to pick any given marginal distribution and assume there will be a way to apply a link function to add fixed and random effects in a spatial generalized linear model. We introduce an adjustment to spatial copula processes called a non-Gaussian translation process that will allow for the specification of any marginal distribution with a closed-form density function in a single unified framework. While translation processes do not preserve the exact marginal structure, they allow for fixed effects to be included in a non-Gaussian spatial model without needing to define a link function, as well as providing a number of other computational and modeling benefits. Non-Gaussian translation processes are compared theoretically and via simulation with traditional link function approaches and spatial copula processes and are shown to perform similarly in cases where all three models can effectively be used. A daily precipitation data set is analyzed with elevation as a predictor variable that includes a majority of observations being 0. Out-of-sample predictions are evaluated, and it is determined that the model is effective when compared to a two-stage prediction model and a Bayesian power truncated normal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banerjee S, Carlin BP, Gelfand AE (2014) Hierarchical modeling and analysis for spatial data. CRC Press, Cambridge

    Book  Google Scholar 

  • Bárdossy A (2006) Copula-based geostatistical models for groundwater quality parameters, Water Resources Research, 42

  • Bárdossy A, Li J (2008) Geostatistical interpolation using copulas, Water Resources Research, 44

  • Bardossy A, Plate EJ (1992) Space-time model for daily rainfall using atmospheric circulation patterns. Water Resourc Res 28:1247–1259

    Article  Google Scholar 

  • Berrocal VJ, Raftery AE, Gneiting T et al (2008) Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann Appl Stat 2:1170–1193

    Article  MathSciNet  Google Scholar 

  • Casson E, Coles S (1999) Spatial regression models for extremes. Extremes 1:449–468

    Article  Google Scholar 

  • Chen M-H, Shao Q-M, Ibrahim JG (2012) Monte Carlo methods in Bayesian computation. Springer, Berlin

    MATH  Google Scholar 

  • Coles S, Bawa J, Trenner L, Dorazio P (2001) An introduction to statistical modeling of extreme values. Springer, Berlin

    Book  Google Scholar 

  • Cressie N (1993) Statistics for spatial data. John Wiley & Sons, New York

    Book  Google Scholar 

  • Cressie N, Huang H-C (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J Am Stat Assoc 94:1330–1339

    Article  MathSciNet  Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. John Wiley & Sons, New York

    MATH  Google Scholar 

  • Datta A, Banerjee S, Finley AO, Hamm NA, Schaap M (2016) Nonseparable dynamic nearest neighbor Gaussian process models for large spatio-temporal data with an application to particulate matter analysis. Ann Appl Stat 10:1286

    Article  MathSciNet  Google Scholar 

  • Dean C, Lawless JF (1989) Tests for detecting overdispersion in Poisson regression models. J Am Stat Assoc 84:467–472

    Article  MathSciNet  Google Scholar 

  • Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics. J Royal Stat Soc Ser C (Appl Stat) 47:299–350

    Article  MathSciNet  Google Scholar 

  • Ferrante F, Arwade S, Graham-Brady L (2005) A translation model for non-stationary, non-Gaussian random processes. Prob Eng Mech 20:215–228

    Article  Google Scholar 

  • Grigoriu M (1998) Simulation of stationary non-Gaussian translation processes. J Eng Mech 124:121–126

    Article  Google Scholar 

  • Grigoriu M (2009) Existence and construction of translation models for stationary non-Gaussian processes. Prob Eng Mech 24:545–551

    Article  Google Scholar 

  • Hall DB (2000) Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics 56:1030–1039

    Article  MathSciNet  Google Scholar 

  • Haslauer CP, Li J, Bárdossy A (2010) Application of copulas in geostatistics, in geoENV VII-Geostatistics for Environmental Applications. Springer, Berlin, pp 395–404

    Book  Google Scholar 

  • Holloway G, Shankar B, Rahmanb S (2002) Bayesian spatial probit estimation: a primer and an application to HYV rice adoption. Agric Econ 27:383–402

    Article  Google Scholar 

  • Ishwaran H, Rao JS et al (2005) Spike and slab variable selection: frequentist and Bayesian strategies. Ann Stat 33:730–773

    Article  MathSciNet  Google Scholar 

  • Johnson DS, Conn PB, Hooten MB, Ray JC, Pond BA (2013) Spatial occupancy models for large data sets. Ecology 94:801–808

    Article  Google Scholar 

  • Kazianka H, Pilz J (2010) Copula-based geostatistical modeling of continuous and discrete data including covariates. Stoch Environ Res Risk Assess 24:661–673

    Article  Google Scholar 

  • Kazianka H, Pilz J (2011) Bayesian spatial modeling and interpolation using copulas. Comput Geosci 37:310–319

    Article  Google Scholar 

  • Liang F, Paulo R, Molina G, Clyde MA, Berger JO (2008) Mixtures of g priors for Bayesian variable selection. J Am Stat Assoc 103:410–423

    Article  MathSciNet  Google Scholar 

  • Nieto-Barajas LE, Huerta G (2017) Spatio-temporal pareto modelling of heavy-tail data. Spatial Stat 20:92–109

    Article  MathSciNet  Google Scholar 

  • Samorodnitsky G, Taqqu MS, Linde R (1996) Stable non-gaussian random processes: stochastic models with infinite variance. Bull London Math Soc 28:554–555

    Article  Google Scholar 

  • Sang H, Gelfand AE (2010) Continuous spatial process models for spatial extreme values. J Agric Biol Environ Stat 15:49–65

    Article  MathSciNet  Google Scholar 

  • Sanso B, Guenni L (1999) Venezuelan rainfall data analysed by using a Bayesian space-time model. J Royal Stat Soc Ser C (Appl Stat) 48:345–362

    Article  Google Scholar 

  • Sun Y, Stein ML et al (2015) A stochastic space-time model for intermittent precipitation occurrences. Ann Appl Stat 9:2110–2132

    Article  MathSciNet  Google Scholar 

  • Ver Hoef JM, Boveng PL (2007) Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology 88:2766–2772

    Article  Google Scholar 

  • Wikle CK (2002) A kernel-based spectral model for non-Gaussian spatio-temporal processes. Stat Modell 2:299–314

    Article  MathSciNet  Google Scholar 

  • Zhang H (2002) On estimation and prediction for spatial generalized linear mixed models. Biometrics 58:129–136

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Richardson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 181 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, R. Spatial Generalized Linear Models with Non-Gaussian Translation Processes. JABES 27, 4–21 (2022). https://doi.org/10.1007/s13253-021-00458-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-021-00458-y

Keywords

Navigation