Abdulah S, Li Y, Cao J, Ltaief H, Keyes DE, Genton MG, Sun Y (2019) ExaGeoStatR: A package for large-scale geostatistics in R. arXiv preprint arXiv:1908.06936
Abdulah S, Ltaief H, Sun Y, Genton MG, Keyes DE (2018a) ExaGeoStat: A high performance unified software for geostatistics on manycore systems. IEEE Trans Parallel Distrib Syst 29(12):2771–2784
Article
Google Scholar
Abdulah S, Ltaief H, Sun Y, Genton MG, Keyes DE (2018b). Parallel approximation of the maximum likelihood estimation for the prediction of large-scale geostatistics simulations. In: 2018 IEEE international conference on cluster computing (CLUSTER), pp. 98–108
Abdulah S, Ltaief H, Sun Y, Genton MG, Keyes DE (2019). Geostatistical modeling and prediction using mixed precision tile Cholesky factorization. In: 2019 IEEE 26th international conference on high performance computing, data, and analytics (HiPC), pp. 152–162
Banerjee S, Gelfand AE, Finley AO, Sang H (2008) Gaussian predictive process models for large spatial data sets. J Royal Stat Soc: Ser B (Stat Methodol) 70(4):825–848
MathSciNet
Article
Google Scholar
Bradley JR, Cressie N, Shi T (2016) A comparison of spatial predictors when datasets could be very large. Stat Surv 10:100–131
MathSciNet
Article
Google Scholar
CHAMELEON (2021, January). The Chameleon project. Available at https://project.inria.fr/chameleon
Cressie N, Johannesson G (2008) Fixed rank kriging for very large spatial data sets. J Royal Stat Soc: Ser B (Stat Methodol) 70(1):209–226
MathSciNet
Article
Google Scholar
Datta A, Banerjee S, Finley AO, Gelfand AE (2016) Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets. J Am Stat Assoc 111(514):800–812
MathSciNet
Article
Google Scholar
Englund EJ (1990) A variance of geostatisticians. Math Geol 22(4):417–455
Article
Google Scholar
Furrer R, Genton MG, Nychka D (2006) Covariance tapering for interpolation of large spatial datasets. J Comput Graph Stat 15(3):502–523
MathSciNet
Article
Google Scholar
Guinness J, Katzfuss M, Fahmy Y (2021) GpGp: Fast Gaussian Process Computation Using Vecchia’s Approximation. R package version 0.3.2
Heaton MJ, Datta A, Finley AO, Furrer R, Guinness J, Guhaniyogi R, Gerber F, Gramacy RB, Hammerling D, Katzfuss M, Lindgren F, Nychka DW, Sun F, Zammit-Mangion A (2019) A case study competition among methods for analyzing large spatial data. J Agricult Biol Environ Stat 24(3):398–425
MathSciNet
Article
Google Scholar
HICMA (2021, January). The HiCMA project. Available at https://github.com/ecrc/hicma
Hong Y, Abdulah S, Genton MG, Sun Y (2021). Efficiency assessment of approximated spatial predictions for large datasets. Spat Stat 43:100517
Johnson SG (2014) The NLopt nonlinear-optimization package. Available at https://github.com/stevengj/nlopt
Katzfuss M (2017) A multi-resolution approximation for massive spatial datasets. J Am Stat Assoc 112(517):201–214
MathSciNet
Article
Google Scholar
Kaufman CG, Schervish MJ, Nychka DW (2008) Covariance tapering for likelihood-based estimation in large spatial data sets. J Am Stat Assoc 103(484):1545–1555
MathSciNet
Article
Google Scholar
Litvinenko A, Sun Y, Genton MG, Keyes DE (2019) Likelihood approximation with hierarchical matrices for large spatial datasets. Comput Stat Data Anal 137:115–132
MathSciNet
Article
Google Scholar
R Core Team (2019) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J Royal Stat Soc: Ser B (Stat Methodol) 71(2):319–392
MathSciNet
Article
Google Scholar
Sang H, Huang JZ (2012) A full scale approximation of covariance functions for large spatial data sets. J Royal Stat Soc: Ser B (Stat Methodol) 74(1):111–132
MathSciNet
Article
Google Scholar
Srivastava RM (1987) A non-ergodic framework for variograms and covariance functions. Master’s thesis, Stanford University, Stanford, CA
Sun Y, Li B, Genton MG (2012) Geostatistics for large datasets, Chapter 3. In: Porcu E, Montero J-M, Schlather M (eds) Advances and challenges in space-time modelling of natural events, vol 207. Springer, Berlin, pp 55–77
Chapter
Google Scholar
Varin C (2008) On composite marginal likelihoods. Adv Stat Anal 92(1):1–28
MathSciNet
Article
Google Scholar
Varin C, Reid N, Firth D (2011) An overview of composite likelihood methods. Statistica Sinica 21:5–42
MathSciNet
MATH
Google Scholar
Vecchia AV (1988) Estimation and model identification for continuous spatial processes. J Roy Stat Soc: Ser B (Methodol) 50(2):297–312
MathSciNet
Google Scholar
Wikle CK, Cressie N, Zammit-Mangion A, Shumack C (2017). A common task framework (ctf) for objective comparison of spatial prediction methodologies. Stats & data science views. Available at https://www.statisticsviews.com/article/a-common-task-framework-ctf-for-objective-comparison-of-spatial-prediction-methodologies
Xu G, Genton MG (2017) Tukey \(g\)-and-\(h\) random fields. J Am Stat Assoc 112(519):1236–1249
MathSciNet
Article
Google Scholar