Skip to main content

A Nonstationary Spatial Covariance Model for Processes Driven by Point Sources


We introduce a new nonstationary spatial covariance model for analyzing geostatistical point-referenced data that contain point sources (i.e., known locations that impact the outcome). Our model is based on viewing the spatial domain on the polar coordinate scale, with the point source representing the reference location. As a result, we incorporate distances from the point source and angles of the separation vector with respect to the point source into the covariance model definition in order to describe complex correlation patterns that may be induced by the point source. We apply the new model and several competing options to analyze the impact of a hog lot on house sales prices in Cedar Falls, Iowa. We find that the new model offers improved model fit and predictive ability through Watanabe–Akaike information criterion and cross-validation, respectively. Additionally, we design a simulation study to determine the impact that mean misspecification has on each model’s ability to produce quality predictions. Overall, the new model is shown to consistently outperform the competitors and is useful even when the point source has no impact on the outcome.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  • Banerjee, S., B. P. Carlin, and A. E. Gelfand (2014). Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC.

  • Cressie, N. (1992). Statistics for spatial data. Terra Nova 4(5), 613–617.

    Article  Google Scholar 

  • Ecker, M. D. and V. De Oliveira (2008). Bayesian spatial modeling of housing prices subject to a localized externality. Communications in Statistics–Theory and Methods 37(13), 2066–2078.

    Article  MathSciNet  MATH  Google Scholar 

  • Ecker, M. D., V. De Oliveira, and H. Isakson (2013). A note on a non-stationary point source spatial model. Environmental and Ecological Statistics 20(1), 59–67.

    Article  MathSciNet  Google Scholar 

  • Fouedjio, F. (2017). Second-order non-stationary modeling approaches for univariate geostatistical data. Stochastic Environmental Research and Risk Assessment 31(8), 1887–1906.

    Article  Google Scholar 

  • Gelfand, A. E. and A. F. Smith (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85(410), 398–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Geman, S. and D. Geman (1984). Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence (6), 721–741.

    Article  MATH  Google Scholar 

  • Genton, M. G. (2001). Classes of kernels for machine learning: a statistics perspective. Journal of Machine Learning Research 2, 299–312.

    MATH  Google Scholar 

  • Geweke, J. (1991). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, Volume 196. Minneapolis, MN, USA: Federal Reserve Bank of Minneapolis, Research Department.

    Google Scholar 

  • Gneiting, T. et al. (2013). Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4), 1327–1349.

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes-Oliver, J. M., G. Gonzalez-Farias, J.-C. Lu, and D. Chen (1998). Parametric nonstationary correlation models. Statistics & Probability Letters 40(3), 267–278.

    Article  MATH  Google Scholar 

  • Hughes-Oliver, J. M. and G. González-Farıas (1999). Parametric covariance models for shock-induced stochastic processes. Journal of Statistical Planning and Inference 77(1), 51–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Jeong, J. and M. Jun (2015). Covariance models on the surface of a sphere: when does it matter? Stat 4(1), 167–182.

    Article  MathSciNet  Google Scholar 

  • Martin, R., T. Di Battista, L. Ippoliti, and E. Nissi (2006). A model for estimating point sources in spatial data. Statistical Methodology 3(4), 431–443.

    Article  MathSciNet  MATH  Google Scholar 

  • Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21(6), 1087–1092.

    Article  MATH  Google Scholar 

  • Warren, J. L., L. Grandjean, D. A. Moore, A. Lithgow, J. Coronel, P. Sheen, J. L. Zelner, J. R. Andrews, and T. Cohen (2018). Investigating spillover of multidrug-resistant tuberculosis from a prison: a spatial and molecular epidemiological analysis. BMC Medicine 16(1), 122.

    Article  Google Scholar 

  • Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research 11(Dec), 3571–3594.

Download references


The author thanks Professor Mark D. Ecker for sharing the hog lot and house sales prices data used in this work.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Joshua L. Warren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 145 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Warren, J.L. A Nonstationary Spatial Covariance Model for Processes Driven by Point Sources. JABES 25, 415–430 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Bayesian modeling
  • Cross-validation
  • Kriging
  • Polar coordinate system