Skip to main content
Log in

Abstract

This paper investigates the problem of adjusting for spatial effects in genomic prediction. Despite being seldomly considered in genomic prediction, spatial effects often affect phenotypic measurements of plants. We consider a Gaussian random field model with an additive covariance structure that incorporates genotype effects, spatial effects and subpopulation effects. An empirical study shows the existence of spatial effects and heterogeneity across different subpopulation families, while simulations illustrate the improvement in selecting genotypically superior plants by adjusting for spatial effects in genomic prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bernal-Vasquez, A.-M., Möhring, J., Schmidt, M., Schönleben, M., Schön, C.-C., and Piepho, H.-P. (2014), “The importance of phenotypic data analysis for genomic prediction-a case study comparing different spatial models in rye,” BMC Genomics, 15(1), 646.

    Article  Google Scholar 

  • Besag, J., Green, P., Higdon, D., and Mengersen, K. (1995), “Bayesian computation and stochastic systems,” Statistical Science, 10(1), 3–41.

    Article  MathSciNet  MATH  Google Scholar 

  • Besag, J., and Green, P. J. (1993), “Spatial statistics and Bayesian computation,” Journal of the Royal Statistical Society. Series B (Methodological), 55(1), 25–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Besag, J., and Higdon, D. (1999), “Bayesian analysis of agricultural field experiments,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(4), 691–746.

    Article  MathSciNet  MATH  Google Scholar 

  • Besag, J., and Kooperberg, C. (1995), “On conditional and intrinsic autoregressions,” Biometrika, 82(4), 733–746.

    MathSciNet  MATH  Google Scholar 

  • Cabrera-Bosquet, L., Crossa, J., von Zitzewitz, J., Serret, M. D., and Luis Araus, J. (2012), “High-throughput Phenotyping and Genomic Selection: The Frontiers of Crop Breeding ConvergeF,” Journal of Integrative Plant Biology, 54(5), 312–320.

    Article  Google Scholar 

  • Crossa, J., Burgueño, J., Cornelius, P. L., McLaren, G., Trethowan, R., and Krishnamachari, A. (2006), “Modeling genotype\(\times \) environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes,” Crop Science, 46(4), 1722–1733.

    Google Scholar 

  • Cullis, B., and Gleeson, A. C. (1991), “Spatial analysis of field experiments-an extension to two dimensions,” Biometrics, 47(4), 1449–1460.

    Article  Google Scholar 

  • Cullis, B., Gogel, B., Verbyla, A., and Thompson, R. (1998), “Spatial analysis of multi-environment early generation variety trials,” Biometrics, 54(1), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Durban, M., Hackett, C. A., McNicol, J. W., Newton, A. C., Thomas, W. T., and Currie, I. D. (2003), “The practical use of semiparametric models in field trials,” Journal of Agricultural, Biological, and Environmental Statistics, 8(1), 48–66.

    Article  Google Scholar 

  • Dutta, S., and Mondal, D. (2015), “An h-likelihood method for spatial mixed linear models based on intrinsic auto-regressions,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(3), 699–726.

    Article  MathSciNet  MATH  Google Scholar 

  • Dutta, S., and Mondal, D. (2016), “REML estimation with intrinsic Matérn dependence in the spatial linear mixed model,” Electronic Journal of Statistics, 10(2), 2856–2893.

    Article  MathSciNet  MATH  Google Scholar 

  • Endelman, J. B. (2011), “Ridge regression and other kernels for genomic selection with R package rrBLUP,” The Plant Genome, 4(3), 250–255.

    Article  Google Scholar 

  • Gilmour, A. R., Cullis, B. R., and Verbyla, A. P. (1997), “Accounting for natural and extraneous variation in the analysis of field experiments,” Journal of Agricultural, Biological, and Environmental Statistics, 2(3), 269–293.

    Article  MathSciNet  Google Scholar 

  • Gleeson, A. C., and Cullis, B. R. (1987), “Residual maximum likelihood (REML) estimation of a neighbour model for field experiments,” Biometrics, 43(2), 277–287.

    Article  Google Scholar 

  • Hao, T., Elith, J., Lahoz-Monfort, J. J., and Guillera-Arroita, G. (2020), “Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models,” Ecography, 43(4), 549–558.

    Article  Google Scholar 

  • Lado, B., Matus, I., Rodríguez, A., Inostroza, L., Poland, J., Belzile, F., del Pozo, A., Quincke, M., Castro, M., and von Zitzewitz, J. (2013), “Increased genomic prediction accuracy in wheat breeding through spatial adjustment of field trial data,” G3: Genes—Genomes—Genetics, 3(12), 2105–2114.

  • Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S., and Zhang, Z. (2012), “GAPIT: genome association and prediction integrated tool,” Bioinformatics, 28(18), 2397–2399.

    Article  Google Scholar 

  • Liu, X., Huang, M., Fan, B., Buckler, E. S., and Zhang, Z. (2016), “Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies,” PLoS Genetics, 12(2), e1005767.

    Article  Google Scholar 

  • Masuka, B., Araus, J. L., Das, B., Sonder, K., and Cairns, J. E. (2012), “Phenotyping for abiotic stress tolerance in maizef,” Journal of Integrative Plant Biology, 54(4), 238–249.

    Article  Google Scholar 

  • McCullagh, P., and Clifford, D. (2006), Evidence for conformal invariance of crop yields, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 462, pp. 2119–2143.

  • McVean, G. (2009), “A genealogical interpretation of principal components analysis,” PLoS Genetics, 5(10), e1000686.

    Article  Google Scholar 

  • Mondal, S., Dutta, S., Crespo-Herrera, L., Huerta-Espino, J., Braun, H. J., and Singh, R. P. (2020), “Fifty years of semi-dwarf spring wheat breeding at CIMMYT: Grain yield progress in optimum, drought and heat stress environments,” Field Crops Research, 250, 107757.

    Article  Google Scholar 

  • Morota, G., and Gianola, D. (2014), “Kernel-based whole-genome prediction of complex traits: A review,” Frontiers in Genetics, 5, 363.

    Google Scholar 

  • Morota, G., Koyama, M., Rosa, G. J., Weigel, K. A., and Gianola, D. (2013), “Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data,” Genetics Selection Evolution, 45, 17.

    Article  Google Scholar 

  • Ober, U., Erbe, M., Long, N., Porcu, E., Schlather, M., and Simianer, H. (2011), “Predicting genetic values: A kernel-based best linear unbiased prediction with genomic data,” Genetics, 188(3), 695–708.

    Article  Google Scholar 

  • Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and Reich, D. (2006), “Principal components analysis corrects for stratification in genome-wide association studies,” Nature Genetics, 38(8), 904–909.

    Article  Google Scholar 

  • Pritchard, J. K., Stephens, M., Rosenberg, N. A., and Donnelly, P. (2000), “Association mapping in structured populations,” The American Journal of Human Genetics, 67(1), 170–181.

    Article  Google Scholar 

  • Reich, D., Price, A. L., and Patterson, N. (2008), “Principal component analysis of genetic data,” Nature Genetics, 40(5), 491–492.

    Article  Google Scholar 

  • Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W. et al. (2017), “Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure,” Ecography, 40(8), 913–929.

    Article  Google Scholar 

  • Rodriguez-Alvarez, M. X., Boer, M. P., van Eeuwijk, F. A., and Eilers, P. H. (2018), “Correcting for spatial heterogeneity in plant breeding experiments with P-splines,” Spatial Statistics, 23, 52–71.

    Article  MathSciNet  Google Scholar 

  • Selle, M. L., Steinsland, I., Hickey, J. M., and Gorjanc, G. (2019), “Flexible modelling of spatial variation in agricultural field trials with the R package INLA,” Theoretical and Applied Genetics, 132(12), 3277–3293.

    Article  Google Scholar 

  • Stroup, W. W. (2002), “Power analysis based on spatial effects mixed models: A tool for comparing design and analysis strategies in the presence of spatial variability,” Journal of Agricultural, Biological, and Environmental Statistics, 7(4), 491–511.

    Article  Google Scholar 

  • Stroup, W. W., Baenziger, P. S., and Mulitze, D. K. (1994), “Removing spatial variation from wheat yield trials: A comparison of methods,” Crop Science, 34(1), 62–66.

    Article  Google Scholar 

  • Stroup, W. W., and Mulitze, D. (1991), “Nearest neighbor adjusted best linear unbiased prediction,” The American Statistician, 45(3), 194–200.

    Google Scholar 

  • VanRaden, P. (2008), “Efficient methods to compute genomic predictions,” Journal of Dairy Science, 91(11), 4414–4423.

    Article  Google Scholar 

  • Verbyla, A. P., Cullis, B. R., Kenward, M. G., and Welham, S. J. (1999), “The analysis of designed experiments and longitudinal data by using smoothing splines,” Journal of the Royal Statistical Society: Series C (Applied Statistics), 48(3), 269–311.

    MATH  Google Scholar 

  • White, J. W., Andrade-Sanchez, P., Gore, M. A., Bronson, K. F., Coffelt, T. A., Conley, M. M., Feldmann, K. A., French, A. N., Heun, J. T., Hunsaker, D. J. et al. (2012), “Field-based phenomics for plant genetics research,” Field Crops Research, 133, 101–112.

    Article  Google Scholar 

  • Yu, J., Holland, J. B., McMullen, M. D., and Buckler, E. S. (2008), “Genetic design and statistical power of nested association mapping in maize,” Genetics, 178(1), 539–551.

    Article  Google Scholar 

  • Yu, J., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., McMullen, M. D., Gaut, B. S., Nielsen, D. M., Holland, J. B. et al. (2006), “A unified mixed-model method for association mapping that accounts for multiple levels of relatedness,” Nature Genetics, 38(2), 203–208.

    Article  Google Scholar 

  • Zhang, Z., Ersoz, E., Lai, C.-Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., Bradbury, P. J., Yu, J., Arnett, D. K., Ordovas, J. M. et al. (2010), “Mixed linear model approach adapted for genome-wide association studies,” Nature Genetics, 42(4), 355–360.

    Article  Google Scholar 

  • Zimmerman, D. L., and Harville, D. A. (1991), “A random field approach to the analysis of field-plot experiments and other spatial experiments,” Biometrics, 47(1), 223–239.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Joint Editor and the two reviewers whose constructive comments and suggestions led to a considerably improved version of the manuscript. The authors acknowledge the Iowa State University Plant Sciences Institute Scholars Program for financial support and the lab of Patrick S. Schnable and former graduate research assistant Sarah Hill–Skinner for collecting and sharing the maize data. This article is a product of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. IOW03617 is supported by USDA/NIFA and State of Iowa funds. Xiaojun Mao’s research is partially supported by Shanghai Sailing Program 19YF1402800. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the U.S. Department of Agriculture or the Science and Technology Commission of Shanghai Municipality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somak Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 310 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Dutta, S., Wong, R.K.W. et al. Adjusting for Spatial Effects in Genomic Prediction. JABES 25, 699–718 (2020). https://doi.org/10.1007/s13253-020-00396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-020-00396-1

Keywords

Navigation