Alexiadis, M., Dokopoulos, P., Sahsamanoglou, H. et al. (1999) Wind speed and power forecasting based on spatial correlation models. IEEE Transactions on Energy Conversion
14(3), 836–842.
Article
Google Scholar
Bakka, H., Rue, H., Fuglstad, G. A., Riebler, A., Bolin, D., Illian, J., Krainski, E., Simpson, D. and Lindgren, F. (2018) Spatial modelling with R-INLA: A review. WIREs Computational Statistics,
10: null. https://doi.org/10.1002/wics.1443.
Bivand, R., Gómez-Rubio, V. and Rue, H. (2015) Spatial data analysis with R-INLA with some extensions. Journal of Statistical Software
63(1), 1–31.
Google Scholar
Casson, E. and Coles, S. (1999) Spatial regression models for extremes. Extremes
1(4), 449–468.
Article
MATH
Google Scholar
Castro-Camilo, D. and Huser, R. (2019) Local likelihood estimation of complex tail dependence structures, applied to us precipitation extremes. arXiv preprint
arXiv:1710.00875 Submitted.
Cooley, D., Nychka, D. and Naveau, P. (2007) Bayesian spatial modeling of extreme precipitation return levels. Journal of the American Statistical Association
102(479), 824–840.
MathSciNet
Article
MATH
Google Scholar
Davison, A. C. and Huser, R. (2015) Statistics of extremes. Annual Review of Statistics and its Application
2, 203–235.
Article
Google Scholar
Davison, A. C. and Smith, R. L. (1990) Models for exceedances over high thresholds. Journal of the Royal Statistical Society. Series B (Methodological)
52(3), 393–442.
MathSciNet
Article
MATH
Google Scholar
Erdem, E. and Shi, J. (2011) ARMA based approaches for forecasting the tuple of wind speed and direction. Applied Energy
88(4), 1405–1414.
Article
Google Scholar
Fuglstad, G.-A., Simpson, D., Lindgren, F. and Rue, H. (2018) Constructing priors that penalize the complexity of Gaussian random fields. Journal of the American Statistical Association pp. 1–8.
Gneiting, T., Balabdaoui, F. and Raftery, A. E. (2007) Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
69(2), 243–268.
MathSciNet
Article
MATH
Google Scholar
Gneiting, T., Larson, K., Westrick, K., Genton, M. G. and Aldrich, E. (2006) Calibrated probabilistic forecasting at the stateline wind energy center: The regime-switching space–time method. Journal of the American Statistical Association
101(475), 968–979.
MathSciNet
Article
MATH
Google Scholar
Gneiting, T. and Ranjan, R. (2011) Comparing density forecasts using threshold-and quantile-weighted scoring rules. Journal of Business & Economic Statistics
29(3), 411–422.
MathSciNet
Article
MATH
Google Scholar
Hering, A. S. and Genton, M. G. (2010) Powering up with space-time wind forecasting. Journal of the American Statistical Association
105(489), 92–104.
MathSciNet
Article
MATH
Google Scholar
Hering, A. S., Kazor, K. and Kleiber, W. (2015) A markov-switching vector autoregressive stochastic wind generator for multiple spatial and temporal scales. Resources
4(1), 70–92.
Article
Google Scholar
Huang, Z. and Chalabi, Z. (1995) Use of time-series analysis to model and forecast wind speed. Journal of Wind Engineering and Industrial Aerodynamics
56(2–3), 311–322.
Article
Google Scholar
Huser, R. and Davison, A. (2014) Space–time modelling of extreme events. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
76(2), 439–461.
MathSciNet
Article
Google Scholar
Kazor, K. and Hering, A. S. (2015) The role of regimes in short-term wind speed forecasting at multiple wind farms. Stat
4(1), 271–290.
MathSciNet
Article
Google Scholar
Koenker, R. (2005) Quantile Regression. Cambridge University Press, Cambridge UK.
Book
MATH
Google Scholar
Krainski, E. T., Gómez-Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo, D., Simpson, D., Lindgren, F. and Rue, H. (2019) Advanced Spatial Modeling with Stochastic Partial Differential Equations using R and INLA. CRC press. Github version https://www.r-inla.org/spde-book.
Lenzi, A., Pinson, P., Clemmensen, L. H. and Guillot, G. (2017) Spatial models for probabilistic prediction of wind power with application to annual-average and high temporal resolution data. Stochastic Environmental Research and Risk Assessment
31(7), 1615–1631.
Article
Google Scholar
Lerch, S., Thorarinsdottir, T. L., Ravazzolo, F., Gneiting, T. et al. (2017) Forecaster’s dilemma: Extreme events and forecast evaluation. Statistical Science
32(1), 106–127.
MathSciNet
Article
MATH
Google Scholar
Li, G. and Shi, J. (2010) On comparing three artificial neural networks for wind speed forecasting. Applied Energy
87(7), 2313–2320.
Article
Google Scholar
Lindgren, F., Rue, H. and Lindström, J. (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
73(4), 423–498.
MathSciNet
Article
MATH
Google Scholar
Lombardo, L., Opitz, T. and Huser, R. (2018) Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster. Stochastic Environmental Research and Risk Assessment
32(7), 2179–2198.
Article
Google Scholar
Naveau, P., Huser, R., Ribereau, P. and Hannart, A. (2016) Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection. Water Resources Research
52(4), 2753–2769.
Article
Google Scholar
Opitz, T., Huser, R., Bakka, H. and Rue, H. (2018) INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles. Extremes
21(3), 441–462.
MathSciNet
Article
MATH
Google Scholar
Palomares-Salas, J., De La Rosa, J., Ramiro, J., Melgar, J., Aguera, A. and Moreno, A. (2009) Arima vs. neural networks for wind speed forecasting. In Computational Intelligence for Measurement Systems and Applications, 2009. CIMSA’09. IEEE International Conference on, pp. 129–133.
Pinson, P. and Madsen, H. (2012) Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models. Journal of forecasting
31(4), 281–313.
MathSciNet
Article
MATH
Google Scholar
Riebler, A., Held, L., Rue, H. et al. (2012) Estimation and extrapolation of time trends in registry data—borrowing strength from related populations. The Annals of Applied Statistics
6(1), 304–333.
MathSciNet
Article
MATH
Google Scholar
Rootzén, H., Segers, J. and Wadsworth, J. L. (2018) Multivariate peaks over thresholds models. Extremes
21(1), 115–145.
MathSciNet
Article
MATH
Google Scholar
Rue, H. and Held, L. (2005) Gaussian Markov random fields: theory and applications. CRC press.
Rue, H., Martino, S. and Chopin, N. (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal statistical society: Series B (Statistical Methodology)
71(2), 319–392.
MathSciNet
Article
MATH
Google Scholar
Rue, H., Riebler, A., Sørbye, S. H., Illian, J. B., Simpson, D. P. and Lindgren, F. K. (2017) Bayesian computing with INLA: a review. Annual Review of Statistics and Its Application
4, 395–421.
Article
Google Scholar
Scarrott, C. and MacDonald, A. (2012) A review of extreme value threshold es-timation and uncertainty quantification. REVSTAT–Statistical Journal
10(1), 33–60.
MathSciNet
MATH
Google Scholar
Shih, D. C.-F. (2008) Wind characterization and potential assessment using spectral analysis. Stochastic Environmental Research and Risk Assessment
22(2), 247–256.
MathSciNet
Article
MATH
Google Scholar
Simpson, D., Rue, H., Riebler, A., Martins, T. G., Sørbye, S. H. et al. (2017) Penalising model component complexity: A principled, practical approach to constructing priors. Statistical Science
32(1), 1–28.
MathSciNet
Article
MATH
Google Scholar
Tancredi, A., Anderson, C. and OH́agan, A. (2006) Accounting for threshold uncertainty in extreme value estimation. Extremes
9(2), 87.
MathSciNet
Article
MATH
Google Scholar
Thibaud, E. and Opitz, T. (2015) Efficient inference and simulation for elliptical pareto processes. Biometrika
102(4), 855–870.
MathSciNet
Article
MATH
Google Scholar
Zhu, X. and Genton, M. G. (2012) Short-term wind speed forecasting for power system operations. International Statistical Review
80(1), 2–23.
MathSciNet
Article
MATH
Google Scholar