Skip to main content
Log in

Improved Return Level Estimation via a Weighted Likelihood, Latent Spatial Extremes Model

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

Uncertainty in return level estimates for rare events, like the intensity of large rainfall events, makes it difficult to develop strategies to mitigate related hazards, like flooding. Latent spatial extremes models reduce the uncertainty by exploiting spatial dependence in statistical characteristics of extreme events to borrow strength across locations. However, these estimates can have poor properties due to model misspecification: Many latent spatial extremes models do not account for extremal dependence, which is spatial dependence in the extreme events themselves. We improve estimates from latent spatial extremes models that make conditional independence assumptions by proposing a weighted likelihood that uses the extremal coefficient to incorporate information about extremal dependence during estimation. This approach differs from, and is simpler than, directly modeling the spatial extremal dependence; for example, by fitting a max-stable process, which is challenging to fit to real, large datasets. We adopt a hierarchical Bayesian framework for inference, use simulation to show the weighted model provides improved estimates of high quantiles, and apply our model to improve return level estimates for Colorado rainfall events with 1% annual exceedance probability.

Supplementary materials accompanying this paper appear online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Brown, B. M. and Resnick, S. I. (1977). Extreme values of independent stochastic processes. Journal of Applied Probability, 14(4):732–739.

    Article  MathSciNet  MATH  Google Scholar 

  • Cao, Y. and Li, B. (2018). Assessing models for estimation and methods for uncertainty quantification for spatial return levels. Environmetrics.

  • Castruccio, S., Huser, R., and Genton, M. G. (2016). High-Order Composite Likelihood Inference for Max-Stable Distributions and Processes. Journal of Computational and Graphical Statistics, 25(4):1212–1229.

    Article  MathSciNet  Google Scholar 

  • Coles, S. G. and Dixon, M. J. (1999). Likelihood-Based Inference for Extreme Value Models. Extremes, 2(1):5–23.

    Article  MATH  Google Scholar 

  • Cooley, D., Naveau, P., and Poncet, P. (2006). Variograms for spatial max-stable random fields. In Bertail, P., Doukhan, P., and Soulier, P., editors, Dependence in Probability and Statistics, pages 373–390. Springer Science+Business Media, LLC, New York, NY.

    Chapter  Google Scholar 

  • Cooley, D., Nychka, D., and Naveau, P. (2007). Bayesian Spatial Modeling of Extreme Precipitation Return Levels. Journal of the American Statistical Association, 102(479):824–840.

    Article  MathSciNet  MATH  Google Scholar 

  • Cooley, D. and Sain, S. R. (2010). Spatial hierarchical modeling of precipitation extremes from a regional climate model. Journal of Agricultural, Biological, and Environmental Statistics, 15(3):381–402.

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie, N. A. C. (1993). Statistics for Spatial Data. John Wiley & Sons, Inc., Hoboken, NJ, revised edition.

    MATH  Google Scholar 

  • Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28(15):2031–2064.

    Article  Google Scholar 

  • Davison, A. C., Padoan, S. A., and Ribatet, M. (2012). Statistical Modeling of Spatial Extremes. Statistical Science, 27(2):161–186.

    Article  MathSciNet  MATH  Google Scholar 

  • De Haan, L. (1984). A Spectral Representation for Max-stable Processes. The Annals of Probability, 12(4):1194–1204.

    Article  MathSciNet  MATH  Google Scholar 

  • Gneiting, T. and Raftery, A. E. (2007). Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association, 102(477):359–378.

    Article  MathSciNet  MATH  Google Scholar 

  • Hans, C. (2009). Bayesian lasso regression. Biometrika, 96(4):835–845.

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, F. and Zidek, J. V. (2002). The weighted likelihood. The Canadian Journal of Statistics, 30(3):347–371.

    Article  MathSciNet  MATH  Google Scholar 

  • Kabluchko, Z., Schlather, M., and de Haan, L. (2009). Stationary Max-Stable Fields Associated to Negative Definite Functions. The Annals of Probability, 37(5):2042–2065.

    Article  MathSciNet  MATH  Google Scholar 

  • Karr, T. W. and Wooten, R. L. (1976). Summer Radar Echo Distribution Around Limon, Colorado. Monthly Weather Review, 104:728–734.

    Article  Google Scholar 

  • Lehmann, E. A., Phatak, A., Stephenson, A., and Lau, R. (2016). Spatial modelling framework for the characterisation of rainfall extremes at different durations and under climate change. Environmetrics, 27(4):239–251.

    Article  MathSciNet  Google Scholar 

  • Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between gaussian fields and gaussian markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 73(4):423–498.

    Article  MathSciNet  MATH  Google Scholar 

  • MacEachern, S. N. and Berliner, L. M. (1994). Subsampling the Gibbs Sampler. The American Statistician, 48(3):188–190.

    Google Scholar 

  • Martins, E. S. and Stedinger, J. R. (2000). Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, 36(3):737–744.

    Article  Google Scholar 

  • Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G. (2012). An overview of the global historical climatology network-daily database. Journal of Atmospheric and Oceanic Technology, 29(7):897–910.

    Article  Google Scholar 

  • Newton, M. A. and Raferty, A. E. (1994). Approximate Bayesian Inference with the Weighted Likelihood Bootstrap. Journal of the Royal Statistical Society Series B, 56(1):3–48.

    MathSciNet  Google Scholar 

  • Opitz, T., Huser, R., Bakka, H., and Rue, H. (2018). INLA goes extreme : Bayesian tail regression for the estimation of high spatio-temporal quantiles. Extremes.

  • Padoan, S. A., Ribatet, M., and Sisson, S. A. (2010). Likelihood-Based Inference for Max-Stable Processes. Journal of the American Statistical Association, 105(489):263–277.

    Article  MathSciNet  MATH  Google Scholar 

  • Park, T. and Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103(482):681–686.

    Article  MathSciNet  MATH  Google Scholar 

  • Reich, B. J. and Shaby, B. A. (2012). A Hierarchical Max-Stable Spatial Model for Extreme Precipitation. Annals of Applied Statistics, 6(4):1430–1451.

    Article  MathSciNet  MATH  Google Scholar 

  • Ribatet, M., Cooley, D., and Davision, A. S. (2012). Bayesian inference from composite likelihoods, with an application to spatial extremes. Statistica Sinica, 22(2):813–845.

    MathSciNet  MATH  Google Scholar 

  • Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(2):319–392.

    Article  MathSciNet  MATH  Google Scholar 

  • Sang, H. and Gelfand, A. E. (2009). Hierarchical modeling for extreme values observed over space and time. Environmental and Ecological Statistics, 16(3):407–426.

    Article  MathSciNet  Google Scholar 

  • Schlather, M. (2002). Models for stationary max-stable random fields. Extremes, 5(1):33–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Schlather, M. and Tawn, J. A. (2003). A Dependence Measure for Multivariate and Spatial Extreme Values: Properties and Inference. Biometrika, 90(1):139–156.

    Article  MathSciNet  MATH  Google Scholar 

  • Schliep, E. M., Cooley, D., Sain, S. R., and Hoeting, J. A. (2010). A comparison study of extreme precipitation from six different regional climate models via spatial hierarchical modeling. Extremes, 13:219–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Sharkey, P. and Winter, H. C. (2018). A Bayesian spatial hierarchical model for extreme precipitation in Great Britain. Environmetrics.

  • Simpson, D., Rue, H., Riebler, A., Martins, T. G., and Sørbye, S. H. (2017). Penalising Model Component Complexity : A Principled , Practical Approach to Constructing Priors. Statistical Science, 32(1):1–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, R. L. (1990). Max-Stable Processes and Spatial Extremes. Unpublished manuscript.

  • Thibaud, E., Aalto, J., Cooley, D. S., Davison, A. C., and Heikkinen, J. (2016). Bayesian inference for the BrownResnick process, with an application to extreme low temperatures. Annals of Applied Statistics, 10(4):2303–2324.

    Article  MathSciNet  MATH  Google Scholar 

  • Tye, M. R. and Cooley, D. (2015). A spatial model to examine rainfall extremes in Colorado’s Front Range. Journal of Hydrology, 530:15–23.

    Article  Google Scholar 

  • Wang, X. (2006). Approximating Bayesian inference by weighted likelihood. The Canadian Journal of Statistics, 34(2):279–298.

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng, F., Thibaud, E., Leonard, M., and Westra, S. (2015). Assessing the performance of the independence method in modeling spatial extreme rainfall. Water Resources Research, 51:7744–7758.

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. AGS–1419558 (Hewitt and Hoeting) and DMS–1243102 (Fix and Cooley). This research utilized the CSU ISTeC Cray HPC System supported by NSF Grant CNS–0923386. This work utilized the RMACC Summit supercomputer, which is supported by the National Science Foundation (Awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder, and Colorado State University. The Summit supercomputer is a joint effort of the University of Colorado Boulder and Colorado State University. We also express our gratitude to Emeric Thibaud and Mathieu Ribatet. Dr. Thibaud provided code to simulate Brown–Resnick processes, and Dr. Ribatet provided a development version of the SpatialExtremes package, written for the R computing language, that implements a Gibbs sampler for the unweighted latent spatial extremes model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Hewitt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7384 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hewitt, J., Fix, M.J., Hoeting, J.A. et al. Improved Return Level Estimation via a Weighted Likelihood, Latent Spatial Extremes Model. JABES 24, 426–443 (2019). https://doi.org/10.1007/s13253-019-00354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-019-00354-6

Keywords

Navigation