Skip to main content
Log in

A Bayesian Generalized Linear Model for Crimean–Congo Hemorrhagic Fever Incidents

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

Global spread of the Crimean–Congo hemorrhagic fever (CCHF) is a fatal viral infection disease found in parts of Africa, Asia, Eastern Europe and Middle East, with a fatality rate of up to 30%. A timely prediction of the prevalence of CCHF incidents is highly desirable, while CCHF incidents often exhibit nonlinearity in both temporal and spatial features. However, the modeling of discrete incidents is not trivial. Moreover, the CCHF incidents are monthly observed in a long period and take a nonlinear pattern over a region at each time point. Hence, the estimation and the data assimilation for incidents require extensive computations. In this paper, using the data augmentation with latent variables, we propose to utilize a dynamically weighted particle filter to take advantage of its population controlling feature in data assimilation. We apply our approach in an analysis of monthly CCHF incidents data collected in Turkey between 2004 and 2012. The results indicate that CCHF incidents are higher at Northern Central Turkey during summer and that some beforehand interventions to stop the propagation are recommendable. Supplementary materials accompanying this paper appear on-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Tikriti, S. K., Al-Ani, F., Jurji, F. J., Tantawi, H., Al-Moslih, M., Al-Janabi, N., Mahmud, M. I., Al-Bana, A., Habib, H., Al-Munthri, H., Al-Janabi, S., Al-Jawahry, K., Yonan, M., Hassan, F., and Simpson, D. I. H. (1981), “Congo/Crimean haemorrhagic fever in Iraq,” The Bulletin of the World Health Organization, 59, 85–90.

    Google Scholar 

  • Albert, J. H. and Chib, S. (1993), “Bayesian Analysis of Binary and Polychotomous Response Data,” Journal of the American Statistical Association, 88, 669–679.

    Article  MathSciNet  MATH  Google Scholar 

  • Burney, M. I., Ghafoor, A., Saleen, M., Webb, P. A., and Casals, J. (1980), “Nosocomial outbreak of viral hemorrhagic fever caused by Crimean Hemorrhagic fever-Congo virus in Pakistan, January 1976,” The American Journal of Tropical Medicine and Hygiene, 29, 941–947.

    Article  Google Scholar 

  • Chapman, L. E., Wilson, M. L., Hall, D. B., LeGuenno, B., Dykstra, E. A., Ba, K., and Fisher-Hoch, S. P. (1991), “Risk factors for Crimean-Congo hemorrhagic fever in rural northern Senegal,” The Journal of Infectious Diseases, 164, 686–692.

    Article  Google Scholar 

  • de Freitas, N., Andrieu, C., Højen-Sørensen, P., Niranjan, M., and Gee, A. (2001), “Sequential Monte Carlo Methods for Neural Networks,” in Sequential Monte Carlo Methods in Practice (Statistics for Engineering and Information Science), eds. Doucet, A., de Freitas, N., and Gordon, N., New York: Springer–Verlag, chap. 17, pp. 359–379.

  • el-Azazy, O. M. and Scrimgeour, E. M. (1997), “Crimean-Congo haemorrhagic fever virus infection in the western province of Saudi Arabia,” Transactions of the Royal Society of Tropical Medicine & Hygine, 91, 275–278.

    Article  Google Scholar 

  • Ergonul, O. and Whitehouse, C. A. (2007), Introduction. Crimean Congo Hemorrhagic Fever: A Global Perspective, Dordrecht, the Netherlands: Springer.

  • Franke, R. (1982), “Scattered data interpolation: Tests of some methods,” Mathematics of Computation, 38, 181–200.

    MathSciNet  MATH  Google Scholar 

  • Frühwirth-Schnatter, S. and Vagner, H. (2006), “Auxiliary mixture sampling for parameter–driven models of time series of counts with applications to state space modelling,” Biometrika, 97, 827–841.

    Article  MathSciNet  MATH  Google Scholar 

  • Golberg, M. A. and Cho, H. A. (2010), Introduction to Regression Analysis, Billerica, MA: WIT Press.

    MATH  Google Scholar 

  • Holmes, C. C. and Mallick, B. K. (1998), “Bayesian Radial Basis Functions of Variable Dimension,” Neural Computation, 10, 1217–1233.

    Article  Google Scholar 

  • Holmes, C. C. and Mallick, B. K. (2003), “Generalized Nonlinear Modeling with Multivariate Free–Knot Regression Splines,” Journal of the American Statistical Association, 98, 352–368.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoogstraal, H. (1979), “The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa,” Journal of Medical Entomology, 15, 307–417.

    Article  Google Scholar 

  • Jia, B., Xu, S., Xiao, G., Lamba, V., and Liang, F. (2017), “Learning gene regulatory networks from next generation sequencing data,” Biometrics, https://doi.org/10.1111/biom.12682.

  • Kappelman, M. D., Moore, K. R., Allen, J. K., and Cook, S. F. (2013), “Recent Trends in the Prevalence of Crohn’s Disease and Ulcerative Colitis in a Commercially Insured US Population,” Digestive Diseases and Sciences, 58, 519–525.

    Article  Google Scholar 

  • Kong, A., Liu, J. S., and Wong, W. H. (1994), “Sequential imputations and Bayesian missing data problems,” Journal of the American Statistical Association, 89, 278–288.

    Article  MATH  Google Scholar 

  • Konishi, S., Ando, T., and Imoto, S. (2004), “Bayesian information criteria and smoothing parameter selection in radial basis function networks,” Biometrika, 91, 27–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, F. (2002), “Dynamically Weighted Importance Sampling in Monte Carlo Computation,” Journal of the American Statistical Association, 97, 807–821.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J. S. (2001), Monte Carlo strategies in scientific computing, New York: Springer.

    MATH  Google Scholar 

  • Liu, L., Chua, L., and Ghista, D. (2007), “Mesh–free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates,” Composite Structures, 78, 58–69.

    Article  Google Scholar 

  • Miazhynskaia, T., Frühwirth-Schnatter, S., and Dorffner, G. (2008), “Neural network models for conditional distribution under bayesian analysis,” Neural Computation, 20, 504–522.

    Article  MathSciNet  MATH  Google Scholar 

  • Papa, A., Ma, B., Kouidou, S., Tang, Q., Hang, C., and Antoniadis, A. (2002), “Genetic characterization of the M RNA segment of Crimean Congo hemorrhagic fever virus strains, China,” Emerging Infectious Diseases, 8, 50–53.

    Article  Google Scholar 

  • Ris, R. C., Holthuijsen, L. H., and Booij, N. (1999), “A third-generation wave model for coastal regions 2, verification,” Journal of Geophysical Research, 104, 7667–7681.

    Article  Google Scholar 

  • Ryu, D., Liang, F., and Mallick, B. K. (2013), “Sea Surface Temperature Modeling using Radial Basis Function Networks With a Dynamically Weighted Particle Filter,” Journal of the American Statistical Association, 108, 111–123.

    Article  MathSciNet  MATH  Google Scholar 

  • Saluzzo, J. F., Aubry, P., McCormick, J., and Digoutte, J. P. (1985), “Haemorrhagic fever caused by Crimean Congo haemorrhagic fever virus in Mauritania,” Transactions of the Royal Society of Tropical Medicine & Hygine, 79, 268.

    Article  Google Scholar 

  • Saluzzo, J. F., Digoutte, J. P., Cornet, M., Baudon, D., Roux, J., and Robert, V. (1984), “Isolation of Crimean-Congo haemorrhagic fever and Rift Valley fever viruses in Upper Volta,” The Lancet, 1, 1179.

    Article  Google Scholar 

  • Schwarz, T. F., Nsanze, H., and Ameen, A. M. (1997), “Clinical features of Crimean-Congo haemorrhagic fever in the United Arab Emirates,” Infection, 25, 364–367.

    Article  Google Scholar 

  • Swanepoel, R., Gill, D. E., Shepherd, A. J., Leman, P. A., Mynhardt, J. H., and Harvey, S. (1989), “The clinical pathology of Crimean-Congo hemorrhagic fever,” Reviews of Infectious Diseases, 11, S794–S800.

    Article  Google Scholar 

  • Swanepoel, R., Shepherd, A. J., Leman, P. A., Shepherd, S. P., McGillivray, G. M., Erasmus, M. J., Searle, L. A., and Gill, D. E. (1987), “Epidemiologic and clinical features of Crimean-Congo hemorrhagic fever in southern Africa,” The American Journal of Tropical Medicine and Hygiene, 36, 120–132.

    Article  Google Scholar 

  • Tanner, M. A. and Wong, W. H. (1987), “The Calculation of Posterior Distributions by Data Augmentation,” Journal of the American Statistical Association, 82, 528–540.

    Article  MathSciNet  MATH  Google Scholar 

  • Turkiewicz, A., Petersson, I., Bjork, J., Hawker, G., Dahlberg, L., Lohmander, L., and Englund, M. (2014), “Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032,” Osteoarthritis and Cartilage, 22, 1826–1832.

    Article  Google Scholar 

  • Williams, R. J., Al-Busaidy, S., Mehta, F. R., Maupin, G. O., Wagoner, K. D., Al-Awaidy, S., Suleiman, A. J., Khan, A. S., Peters, C. J., and Ksiazek, T. G. (2000), “Crimean-congo haemorrhagic fever: a seroepidemiological and tick survey in the Sultanate of Oman,” Tropical Medicine & International Health, 5, 99–106.

    Article  Google Scholar 

  • Woodall, J. P. (2007), “Personal reflections,” in Crimean Congo Hemorrhagic Fever: A Global Perspective, eds. Ergonul, O. and Whitehouse, C. A., Dordrecht, the Netherlands: Springer–Verlag, pp. 23–32.

  • Woodall, J. P., Williams, M. C., and Simpson, D. I. (1967), “Congo virus: a hitherto undescribed virus occurring in Africa. II. Identification studies,” East African Medical Journal, 44, 93–98.

    Google Scholar 

  • Yan, Y. C. (1983), “Characteristics of Xinjiang hemorrhagic fever virus. II. Physicohemical properties of Xinjiang hemorrhagic fever virus,” Zhonghua Liu Xing Bing Xue Za Zhi, 4, 132–134.

    Google Scholar 

  • Yilmaz, G. R., Buzgan, T., Irmak, H., Safran, A., Uzun, R., Cevik, M. A., and Torunoglu, M. A. (2008), “The epidemiology of Crimean-Congo hemorrhagic fever in Turkey, 2002-2007,” International Journal of Infectious Diseases, 13, 380–386.

    Article  Google Scholar 

  • Yu, K.-H., See, L.-C., Kuo, C.-F., Chou, I.-J., and Chou, M.-J. (2013), “Prevalence and Incidence in Patients With Autoimmune Rheumatic Diseases: A Nationwide Population-Based Study in Taiwan,” Arthritis Care & Research, 65, 244–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duchwan Ryu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, D., Bilgili, D., Ergönül, Ö. et al. A Bayesian Generalized Linear Model for Crimean–Congo Hemorrhagic Fever Incidents. JABES 23, 153–170 (2018). https://doi.org/10.1007/s13253-017-0310-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-017-0310-9

Keywords

Navigation