Local Influence for Spatially Correlated Binomial Data: An Application to the Spodoptera frugiperda Infestation in Corn

  • D. T. Nava
  • F. De Bastiani
  • M. A. Uribe-OpazoEmail author
  • O. Nicolis
  • M. Galea


Influence diagnostics are valuable tools for understanding the influence of data and/or model assumptions on the results of a statistical analysis. This paper proposes local influence for the analysis of spatially correlated binomial data. We consider a spatial model with a binomial marginal distribution and logit link function. Generalized estimating equations via Fisher’s scoring are used for estimating the parameters. We present an application to the spatial Spodoptera frugiperda infestation where the generalized estimating equations are used to identify potential influential observations by the local influence analysis. The spatial prediction with and without the influential points is compared. The results show that the presence of the influential observation in the data changes statistical inference, the predicted values and the respective maps. A simulation study considering different scenarios shows the performance of the local influence diagnostic method.


Binomial distribution Exponential family Fisher’s score Outliers Quasi-likelihood 



We are grateful to the referees and the Associate Editor whose comments helped to improve the paper. We acknowledge the partial financial support from Fundação Araucária of Paraná state, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil and Projects FONDECYT No. 1131147 and No. 1150325, Chile.


  1. Akaike, H. (1974), “A new look at statistical model identification.” IEEE Transactions on Automatic Control, 19, 716–723.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Albert, P. S., McShane, L. (1995), “A generalized estimating equations approach for spatially correlated binary data: applications to the anlysis of neuroimaging data.” Biometrics, 51 (2), 627–638.Google Scholar
  3. Belay, D. K., Huckaba, R. M., Foster, J. E. (2012), “Susceptibility of the fall armyworm, Spodoptera Frugiperda, (Lepidoptera: Noctuidae), at Santa Isabel, Puerto Rico, to different insecticides,” The Florida Entomologist, 95 (2), 476–478.CrossRefGoogle Scholar
  4. Bozdogan, H., (1987), “Model selection and akaike’s information criterion (aic): The general therory and its analytical extensions,” Psychometrica, 52 (3), 345–370.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Cadigan, N., Farrell, P. (2002), “Generalized local influence with applications to fish stock cohort analysis,” Applied Statistics, 51, 469–483.zbMATHGoogle Scholar
  6. Cook, R. D. (1986), “Assessment of local influence,” Journal of the Royal Statistical Society, B 48, 133–169.MathSciNetzbMATHGoogle Scholar
  7. Cressie, N. (1993), Statistics for Spatial Data, John Wiley, New York.zbMATHGoogle Scholar
  8. Cruz, I., Turpin, F. T. (1983), “Yield impact of larval infestation of the fall armyworm spodoptera irugiperda (J. E. Smith) to mid-whorl growth stage of corn,” Journal of Economic Entomology, 76 (5), 1052–1054.CrossRefGoogle Scholar
  9. Cui, J. (2007), “QIC program and model selection in gee analyses,” The Stata Journal, 7 (2), 209–220.MathSciNetGoogle Scholar
  10. De Bastiani, F., Mariz de Aquino Cysneiros, A. H., Uribe-Opazo, M. A., and Galea, M. (2015), “Influence diagnostics in elliptical spatial linear models,” TEST, 24 (2), 322–340.MathSciNetCrossRefzbMATHGoogle Scholar
  11. EMBRAPA. (2006), Sistema brasileiro de classificao de solos EMBRAPA.Google Scholar
  12. Fritsche Neto, R., Vieira, R.A., Scapim, C.A., Miranda, G.V., Rezende, L.M. (2012), “Updating the ranking of the coefficients of variation from maize experiments”. Acta Scientiarum. Agronomy, 34, 99–101.Google Scholar
  13. Garcia-Papani, F., Uribe-Opazo, M. A., Leiva, V., Aykroyd, R. G. (2017), “Birnbaum-saunders spatial modelling and diagnostics applied to agricultural engineering data,” Stochastic Environmental Research and Risk Assessment, 31, 105–124.CrossRefGoogle Scholar
  14. Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A., Tamò, M. (2017), “First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa,” PLoS One, 11 (10), 1–9.Google Scholar
  15. Gotway, C. A., Cressie, N. (1993), “Improved mulivariate prediction under a general linear model,” Journal of Multivariate Analysis, 45 (1), 56–72.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Gotway, C. A., Stroup, W. W. (1997), “A generalized linear model approach to spatial data analysis and prediction,” Journal of Agricultural, Biological and Environmental Statistics, 2 (2), 157–178.MathSciNetCrossRefGoogle Scholar
  17. Haran, M. (2011), Gaussian random fields models for spatial data. In: Brooks, S., Gelman, A., Jones, G. L., Meng, X.-L. (Eds.), Handbook of Markov Chain Monte Carlo, Chapman and Hal/CRCl, New York, Ch. 18, pp. 449–473.Google Scholar
  18. Hin, L. Y., Wang, Y. G. (2009), “Working-correlation-structure identification in generalized estimating equations,” Statistics in Medicine, 28 (4), 642–658.MathSciNetCrossRefGoogle Scholar
  19. Jung, K-M. (2008), “Local influence in generalized estimating equations,” Scandinavian Journal of Statistics, 35 (1), 286–294.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Liang, K.-Y., Zeger, S. L. (1986), “Longitudinal data analysis using generalized linear models,” Biometrika, 73 (1), 13–22.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Matérn, B. (1960), “Spatial variation,” Meddelanden fren Statens Skogséforskningsinstitut, 49 (5).Google Scholar
  22. Matheron, G. (1963), “Principles of geoestatistics,” Economic Geology, 58 (1), 1246–1266.CrossRefGoogle Scholar
  23. McCullagh, P. (1983), “Quasi-likelihood functions,” Annals Statistic, 11 (1), 59–67.MathSciNetCrossRefzbMATHGoogle Scholar
  24. McCullagh, P., Nelder, J. A. (1989), Generalized Linear Models, 2ed, Chapman e Hall, London.CrossRefzbMATHGoogle Scholar
  25. Militino, A., Palacius, M., and Ugarte, M. (2006), “Outliers detection in multivariate spatial linear models,” Journal of Statistical Planning and Inference, 136, 125–146.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Nelder, J. A., Wedderburn, R. W. M. (1983), “Generalized linear models,” Journal of the Royal Statistical Society, 135 (3), 370–384.CrossRefGoogle Scholar
  27. Pan, W. (2001), “Akaike’s information criterion in generalized estimating equations,” Biometrics, 57 (1), 120–125.MathSciNetCrossRefzbMATHGoogle Scholar
  28. Prentice, R. L. (1988), “Correlated binary regression with covariates specific to each binary observation,” Biometrics, 44 (4), 1033–1048.MathSciNetCrossRefzbMATHGoogle Scholar
  29. Prentice, R. L., Zhao, L. P. (1991), “Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses,” Biometrics, 47 (3), 825–839.MathSciNetCrossRefzbMATHGoogle Scholar
  30. R Development Core Team. (2017), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  31. Rao, C. R., Toutenburg, H., Shalabh, Heumann, C. (2008), Linear Models and generalizations: Least squares and alternatives, 3ed, Springer, Berlin.Google Scholar
  32. Schwarz, G. (1978), “Estimating the dimensional of a model,” Annals of Statistics, 6 (2), 461–464.MathSciNetCrossRefzbMATHGoogle Scholar
  33. Uribe-Opazo, M., Borssoi, J., and Galea, M. (2012), “Influence diagnostics in gaussian spatial linear models,” Journal of Applied Statistics, 39 (3), 615–630.MathSciNetCrossRefGoogle Scholar
  34. Voinoiv, V., Nikulin, M., Balakrishnan, N. (2013), Chi-Squared goodness of fit tests with applications, Elsiever, Walthan.zbMATHGoogle Scholar
  35. Wedderburn, R. W. M. (1974), “Quasi-likelihood functions, generalized linear models and the gauss-newton method,” Biometrika, 61 (3), 439–447.MathSciNetzbMATHGoogle Scholar
  36. Wu, L. (2010), Mixed effects models for complex data, Chapman Hall, Boca Raton.zbMATHGoogle Scholar
  37. Yu, S.J (1991), “Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith),” Pesticide Biochemistry and Physiology, 39 (1), 84–91.CrossRefGoogle Scholar
  38. Zeger, S., Liang, K.-Y. (1986), “Longitudinal data analysis for discrete and continuous outcomes,” Biometrics, 42 (1), 121–130.CrossRefGoogle Scholar
  39. Zeger, S., Liang, K.-Y., Self, S. G. (1985), “The analysis of binary longitudinal data with time-independent covariates,” Biometrika, 72 (1), 31–38.MathSciNetzbMATHGoogle Scholar

Copyright information

© International Biometric Society 2017

Authors and Affiliations

  • D. T. Nava
    • 1
  • F. De Bastiani
    • 2
  • M. A. Uribe-Opazo
    • 3
    Email author
  • O. Nicolis
    • 4
  • M. Galea
    • 5
  1. 1. Universidade Tecnológica Federal do ParanáToledoBrazil
  2. 2. Universidade Federal de PernambucoRecifeBrazil
  3. 3. Universidade Estadual do Oeste do ParanáCascavelBrazil
  4. 4. Universidad de ValparaísoValparaisoChile
  5. 5. Pontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations