Advertisement

Assessing the Impacts of Time-to-Detection Distribution Assumptions on Detection Probability Estimation

  • Adam Martin-Schwarze
  • Jarad Niemi
  • Philip Dixon
Article

Abstract

Abundance estimates from animal point-count surveys require accurate estimates of detection probabilities. The standard model for estimating detection from removal-sampled point-count surveys assumes that organisms at a survey site are detected at a constant rate; however, this assumption can often lead to biased estimates. We consider a class of N-mixture models that allows for detection heterogeneity over time through a flexibly defined time-to-detection distribution (TTDD) and allows for fixed and random effects for both abundance and detection. Our model is thus a combination of survival time-to-event analysis with unknown-N, unknown-p abundance estimation. We specifically explore two-parameter families of TTDDs, e.g., gamma, that can additionally include a mixture component to model increased probability of detection in the initial observation period. Based on simulation analyses, we find that modeling a TTDD by using a two-parameter family is necessary when data have a chance of arising from a distribution of this nature. In addition, models with a mixture component can outperform non-mixture models even when the truth is non-mixture. Finally, we analyze an Ovenbird data set from the Chippewa National Forest using mixed effect models for both abundance and detection. We demonstrate that the effects of explanatory variables on abundance and detection are consistent across mixture TTDDs but that flexible TTDDs result in lower estimated probabilities of detection and therefore higher estimates of abundance.

Supplementary materials accompanying this paper appear on-line.

Keywords

Abundance Availability Hierarchical model Markov chain Monte Carlo N-mixture model Point counts Removal sampling Stan Survival analysis 

Supplementary material

13253_2017_300_MOESM1_ESM.pdf (238 kb)
Supplementary material 1 (pdf 237 KB)
13253_2017_300_MOESM2_ESM.csv (58 kb)
Supplementary material 2 (csv 57 KB)
13253_2017_300_MOESM3_ESM.stan (5 kb)
Supplementary material 3 (stan 4 KB)
13253_2017_300_MOESM4_ESM.stan (5 kb)
Supplementary material 4 (stan 5 KB)
13253_2017_300_MOESM5_ESM.stan (5 kb)
Supplementary material 5 (stan 5 KB)
13253_2017_300_MOESM6_ESM.stan (5 kb)
Supplementary material 6 (stan 5 KB)
13253_2017_300_MOESM7_ESM.stan (5 kb)
Supplementary material 7 (stan 5 KB)
13253_2017_300_MOESM8_ESM.stan (5 kb)
Supplementary material 8 (stan 5 KB)
13253_2017_300_MOESM9_ESM.r (3 kb)
Supplementary material 9 (R 3 KB)
13253_2017_300_MOESM10_ESM.stan (5 kb)
Supplementary material 10 (stan 5 KB)
13253_2017_300_MOESM11_ESM.stan (5 kb)
Supplementary material 11 (stan 5 KB)

References

  1. Alldredge, M. W., Pollock, K. H., Simons, T. R., Collazo, J. A., Shriner, S. A., and Johnson, D. (2007). Time-of-detection method for estimating abundance from point-count surveys. The Auk 124, 653–664.CrossRefGoogle Scholar
  2. Amundson, C. L., Royle, J. A., and Handel, C. M. (2014). A hierarchical model combining distance sampling and time removal to estimate detection probability during avian point counts. The Auk 131, 476–494.CrossRefGoogle Scholar
  3. Borchers, D. L. and Cox, M. J. (2016). Distance sampling detection functions: 2D or not 2D? Biometrics .Google Scholar
  4. Cooray, K. and Ananda, M. M. (2008). A generalization of the half-normal distribution with applications to lifetime data. Communications in Statistics Theory and Methods 37, 1323–1337.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Coull, B. A. and Agresti, A. (1999). The use of mixed logit models to reflect heterogeneity in capture-recapture studies. Biometrics 55, 294–301.CrossRefzbMATHGoogle Scholar
  6. Cox, C., Chu, H., Schneider, M. F., and Muñoz, A. (2007). Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Statistics in medicine 26, 4352–4374.MathSciNetCrossRefGoogle Scholar
  7. Diefenbach, D. R., Marshall, M. R., Mattice, J. A., Brauning, D. W., and Johnson, D. (2007). Incorporating availability for detection in estimates of bird abundance. The Auk 124, 96–106.CrossRefGoogle Scholar
  8. Dorazio, R. M., Jelks, H. L., and Jordan, F. (2005). Improving removal-based estimates of abundance by sampling a population of spatially distinct subpopulations. Biometrics 61, 1093–1101.MathSciNetCrossRefGoogle Scholar
  9. Efford, M. G. and Dawson, D. K. (2009). Effect of distance-related heterogeneity on population size estimates from point counts. The Auk 126, 100–111.CrossRefGoogle Scholar
  10. Etterson, M. A., Niemi, G. J., and Danz, N. P. (2009). Estimating the effects of detection heterogeneity and overdispersion on trends estimated from avian point counts. Ecological Applications 19, 2049–2066.CrossRefGoogle Scholar
  11. Farnsworth, G. L., Nichols, J. D., Sauer, J. R., Fancy, S. G., Pollock, K. H., Shriner, S. A., Simons, T. R., Ralph, C., and Rich, T. (2005). Statistical approaches to the analysis of point count data: a little extra information can go a long way. USDA Forest Service General Technical Report PSW–GTR–191 pp. 735–743.Google Scholar
  12. Farnsworth, G. L., Pollock, K. H., Nichols, J. D., Simons, T. R., Hines, J. E., Sauer, J. R., and Brawn, J. (2002). A removal model for estimating detection probabilities from point-count surveys. The Auk 119, 414–425.CrossRefGoogle Scholar
  13. Geweke, J. et al. (1991). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, volume 196. Federal Reserve Bank of Minneapolis, Research Department Minneapolis, MN, USA.Google Scholar
  14. Hanowski, J., Niemi, G. J., et al. (1995). Experimental design considerations for establishing an off-road, habitat specific bird monitoring program using point counts. Monitoring bird populations by point counts. General Technical Report PSW-GTR-149. Pacific Southwest Research Station, Forest Service, US Department of Agriculture, Albany, CA pp. 145–150.Google Scholar
  15. Hwang, W.-H. and Chao, A. (2002). Continuous-time capture-recapture models with covariates. Statistica Sinica pp. 1115–1131.Google Scholar
  16. Johnson, D. H. (2008). In defense of indices: the case of bird surveys. The Journal of Wildlife Management 72, 857–868.Google Scholar
  17. Kéry, M. (2008). Estimating abundance from bird counts: binomial mixture models uncover complex covariate relationships. The Auk 125, 336–345.CrossRefGoogle Scholar
  18. Laake, J., Collier, B., Morrison, M., and Wilkins, R. (2011). Point-based mark-recapture distance sampling. Journal of Agricultural, Biological, and Environmental Statistics 16, 389–408.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Laplanche, C. (2010). A hierarchical model to estimate fish abundance in alpine streams by using removal sampling data from multiple locations. Biometrical Journal 52, 209–221.MathSciNetzbMATHGoogle Scholar
  20. Lee, D. C. and Marsden, S. J. (2008). Adjusting count period strategies to improve the accuracy of forest bird abundance estimates from point transect distance sampling surveys. Ibis 150, 315–325.CrossRefGoogle Scholar
  21. Mäntyniemi, S., Romakkaniemi, A., and Arjas, E. (2005). Bayesian removal estimation of a population size under unequal catchability. Canadian Journal of Fisheries and Aquatic Sciences 62, 291–300.CrossRefGoogle Scholar
  22. McShea, W. and Rappole, J. (1997). Variable song rates in three species of passerines and implications for estimating bird populations. Journal of Field Ornithology pp. 367–375.Google Scholar
  23. Noufaily, A. and Jones, M. (2013). On maximization of the likelihood for the generalized gamma distribution. Computational Statistics pp. 1–13.Google Scholar
  24. Otis, D. L., Burnham, K. P., White, G. C., and Anderson, D. R. (1978). Statistical inference from capture data on closed animal populations. Wildlife Monographs pp. 3–135.Google Scholar
  25. Petit, D. R., Petit, L. J., Saab, V. A., and Martin, T. E. (1995). Fixed-radius point counts in forests: factors influencing effectiveness and efficiency. Technical Report PSW-GTR-149, USDA Forest Service.Google Scholar
  26. Ralph, C. J., Droege, S., and Sauer, J. R. (1995). Managing and monitoring birds using point counts: Standards and applications. Technical Report PSW-GTR-149, USDA Forest Service.Google Scholar
  27. Reidy, J. L., Thompson, F. R., and Bailey, J. (2011). Comparison of methods for estimating density of forest songbirds from point counts. The Journal of Wildlife Management 75, 558–568.CrossRefGoogle Scholar
  28. Reidy, J. L., Thompson III, F. R., Amundson, C., and ODonnell, L. (2016). Landscape and local effects on occupancy and densities of an endangered wood-warbler in an urbanizing landscape. Landscape Ecology 31, 365–382.CrossRefGoogle Scholar
  29. Rosenstock, S. S., Anderson, D. R., Giesen, K. M., Leukering, T., Carter, M. F., and Thompson III, F. (2002). Landbird counting techniques: current practices and an alternative. The Auk 119, 46–53.CrossRefGoogle Scholar
  30. Royle, J. (2004a). Generalized estimators of avian abundance from count survey data. Animal Biodiversity and Conservation 27, 375–386.Google Scholar
  31. Royle, J. A. (2004b). N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.MathSciNetCrossRefzbMATHGoogle Scholar
  32. Royle, J. A. and Dorazio, R. M. (2006). Hierarchical models of animal abundance and occurrence. Journal of Agricultural, Biological, and Environmental Statistics 11, 249–263.CrossRefGoogle Scholar
  33. Schnute, J. (1983). A new approach to estimating populations by the removal method. Canadian Journal of Fisheries and Aquatic Sciences 40, 2153–2169.CrossRefGoogle Scholar
  34. Scott, T. A., Lee, P.-Y., Greene, G. C., McCallum, D. A., et al. (2005). Singing rate and detection probability: an example from the least bell’s vireo (vireo belli pusillus). In Proceedings of the Third International Partners in Flight Conference, US Department of Agriculture Forest Service, Pacific Southwest Research Station, General Technical Report PSW-GTR-191, Albany, CA, USA, pp. 845–853.Google Scholar
  35. Sólymos, P., Matsuoka, S. M., Bayne, E. M., Lele, S. R., Fontaine, P., Cumming, S. G., Stralberg, D., Schmiegelow, F. K., and Song, S. J. (2013). Calibrating indices of avian density from non-standardized survey data: making the most of a messy situation. Methods in Ecology and Evolution 4, 1047–1058.CrossRefGoogle Scholar
  36. Stan Development Team (2016). Rstan: the R interface to Stan, Version 2.12.1.Google Scholar
  37. Wang, Y.-G. and Loneragan, N. R. (1996). An extravariation model for improving confidence intervals of population size estimates from removal data. Canadian Journal of Fisheries and Aquatic Sciences 53, 2533–2539.CrossRefGoogle Scholar
  38. Wyatt, R. J. (2002). Estimating riverine fish population size from single-and multiple-pass removal sampling using a hierarchical model. Canadian Journal of Fisheries and Aquatic Sciences 59, 695–706.CrossRefGoogle Scholar

Copyright information

© International Biometric Society 2017

Authors and Affiliations

  1. 1.Department of StatisticsIowa State UniversityAmesUSA

Personalised recommendations