Skip to main content

Advertisement

Log in

Bayesian Calibration of Blue Crab (Callinectes sapidus) Abundance Indices Based on Probability Surveys

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

Abundance and standard error estimates in surveys of fishery resources typically employ classical design-based approaches, ignoring the influences of non-design factors such as varying catchability. We developed a Bayesian approach for estimating abundance and associated errors in a fishery survey by incorporating sampling and non-sampling variabilities. First, a zero-inflated spatial model was used to quantify variance components due to non-sampling factors; second, the model was used to calibrate the estimated abundance index and its variance using pseudo empirical likelihood. The approach was applied to a winter dredge survey conducted to estimate the abundance of blue crabs (Callinectes sapidus) in the Chesapeake Bay. We explored the properties of the calibration estimators through a limited simulation study. The variance estimator calibrated on posterior sample performed well, and the mean estimator had comparable performance to design-based approach with slightly higher bias and lower (about 15% reduction) mean squared error. The results suggest that application of this approach can improve estimation of abundance indices using data from design-based fishery surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2014). Hierarchical modeling and analysis for spatial data. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Bauer, L. J. and T. J. Miller. 2010. “Spatial and temporal variability in winter mortality of the blue crab (Callinectes sapidus) in the Chesapeake Bay”. Estuaries and Coasts 33:678-687

    Article  Google Scholar 

  • Brus, D. J., & DeGruijter, J. J. (1993). “Design-based versus model-based estimates of spatial means: Theory and application in environmental soil science”. Environmetrics, 4(2), 123-152.

    Article  Google Scholar 

  • Chen, J., & Sitter, R. R. (1999). A pseudo empirical likelihood approach to the effective use of auxiliary information in complex surveys. Statistica Sinica, 385-406.

  • Chen, J., Sitter, R. R., & Wu, C. (2002). “Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys”. Biometrika, 89(1), 230-237.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J., Thompson, M. E., & Wu, C. (2004). “Estimation of fish abundance indices based on scientific research trawl surveys”. Biometrics, 60(1), 116-123.

    Article  MathSciNet  MATH  Google Scholar 

  • Chesapeake Bay Program (2016). “The Data Hub. Chesapeake Bay Program”. Annapolis, Maryland, U.S. URL http://www.chesapeakebay.net/data.

  • Cicchitelli, G., & Montanari, G. E. (2012). “Model-assisted estimation of a spatial population mean”. International Statistical Review, 80(1), 111-126.

    Article  MathSciNet  Google Scholar 

  • Cressie, N. A. C. (1993). Statistics for Spatial Data. New York: Wiley.

    MATH  Google Scholar 

  • Dick, E.J. 2004. “Beyond “lognormal versus gamma” discrimination among error distributions for generalized linear models”. Fisheries Research 70:351-366.

    Article  Google Scholar 

  • Fieberg, J., Alexander, M., Tse, S., & St Clair, K. (2013). “Abundance estimation with sightability data: a Bayesian data augmentation approach”. Methods in Ecology and Evolution, 4(9), 854-864.

    Article  Google Scholar 

  • Horvitz, D. G., & Thompson, D. J. (1952). “A generalization of sampling without replacement from a finite universe”. Journal of the American Statistical Association, 47(260), 663-685.

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen, O. P., & Miller, T. J. (2005). “Geostatistical analysis of the abundance and winter distribution patterns of the blue crab Callinectes sapidus in Chesapeake Bay”. Transactions of the American Fisheries Society, 134(6), 1582-1598.

    Article  Google Scholar 

  • Kimura, D. K & Somerton, D. A. (2006).“Review of statistical aspects of survey sampling for marine fisheries”. Reviews in Fisheries Science. 14, 245-283.

    Article  Google Scholar 

  • Kumar, N. (2009). “An optimal spatial sampling design for intra-urban population exposure assessment”. Atmospheric Environment, 43(5), 1153-1155.

    Article  Google Scholar 

  • Lindgren, F., & Rue, H. (2015). Bayesian spatial modelling with R-INLA. Journal of Statistical Software, 63(19).

  • Lindgren, F., Rue, H., & Lindström, J. (2011). “An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach”. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4), 423-498.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, H., Ciannelli, L., Decker, M. B., Ladd, C., & Chan, K.-S. (2011). “Nonparametric threshold model of zero-inflated spatio-temporal data with application to shifts in jellyfish distribution”. Journal of Agricultural, Biological, and Environmental Statistics, 16(2), 185-201.

    Article  MathSciNet  MATH  Google Scholar 

  • Maunder, M. N., & Punt, A. E. (2004). “Standardizing catch and effort data: a review of recent approaches”. Fisheries Research, 70(2), 141-159.

    Article  Google Scholar 

  • Opsomer, J. D., Breidt, F. J., Moisen, G. G., & Kauermann, G. (2007). “Model-assisted estimation of forest resources with generalized additive models”. Journal of the American Statistical Association, 102(478), 400-409.

    Article  MathSciNet  MATH  Google Scholar 

  • Pfeffermann, D. (2007). “Comment: struggles with survey weighting and regression modeling”. Statistical Science, 22(2), 179-183.

    Article  MathSciNet  MATH  Google Scholar 

  • Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H., & Rasbash, J. (1998). “Weighting for unequal selection probabilities in multilevel models”. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(1), 23-40.

    Article  MathSciNet  MATH  Google Scholar 

  • Rue, H., Martino, S., & Chopin, N. (2009). “Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations”. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(2), 319-392.

    Article  MathSciNet  MATH  Google Scholar 

  • Särndal, C. E., Swensson, B., & Wretman, J. H. (1992). Model Assisted Survey Sampling. New York: Springer.

    Book  MATH  Google Scholar 

  • Särndal, C. E., Thomsen, I., Hoem, J. M & Lindley, D. V. (1978).“Design-based and model-based inference in survey sampling [with discussion and reply]”. Scandanavian Journal of Statistics, 5(1), 27-52.

    Google Scholar 

  • Savitsky, T. D., & Toth, D. (2016). “Bayesian estimation under informative sampling”. Electronic Journal of Statistics, 10(1), 1677-1708.

    Article  MathSciNet  MATH  Google Scholar 

  • Sharov, A., Vølstad, J., Davis, G., Davis, B., Lipcius, R., & Montane, M. (2003). “Abundance and exploitation rate of the blue crab (Callinectes sapidus) in Chesapeake Bay”. Bulletin of Marine Science, 72(2), 543-565.

    Google Scholar 

  • Smith, S. J. (1990). “Use of statistical models for the estimation of abundance from groundfish trawl survey data”. Canadian Journal of Fisheries and Aquatic Sciences, 47(5), 894-903.

    Article  Google Scholar 

  • Thompson, S. K. (2002). Sampling. New York: Wiley.

    MATH  Google Scholar 

  • Thorson, J. T., & Ward, E. J. (2013). “Accounting for space–time interactions in index standardization models”. Fisheries Research, 147, 426-433.

    Article  Google Scholar 

  • Valliant, R., Dorfman, A., & Royall, R. (2000). Finite Population Sampling and Inference: A Prediction Approach. New York: Wiley-Interscience.

    MATH  Google Scholar 

  • Wagner, T., Bence, J. R., Bremigan, M. T., Hayes, D. B., & Wilberg, M. J. (2007). “Regional trends in fish mean length at age: Components of variance and the statistical power to detect trends”. Canadian Journal of Fisheries and Aquatic Sciences, 64(7), 968–978.

    Article  Google Scholar 

  • Wilberg, M. J., J. T. Thorson, B. C. Linton, and J. Berkson. 2010. “Incorporating time-varying catchability into population dynamic stock assessment models”. Reviews in Fisheries Science 18:7-24.

    Article  Google Scholar 

  • Wu, C. (2005). “Algorithms and R codes for the pseudo empirical likelihood method in survey sampling”. Survey Methodology, 31(2), 239.

    Google Scholar 

  • Wu, C., & Sitter, R. R. (2001). “A model-calibration approach to using complete auxiliary information from survey data”. Journal of the American Statistical Association, 96(453), 185-193.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the Maryland Department of Natural Resources (MDNR) and the Virginia Institute of Marine Science for conducting the Chesapeake Bay blue crab winter dredge survey and G. Davis (MDNR), L. Fegley (MDNR), S. Iverson (Virginia Marine Resource Commission), and A. Sharov (MDNR) for providing the data. Two anonymous reviewers provided helpful comments. The work was funded by Grant CBSAC4 from the Chesapeake Bay Trust. This is contribution number 5383 of the University of Maryland Center for Environmental Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Miller.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, D., Nesslage, G., Wilberg, M. et al. Bayesian Calibration of Blue Crab (Callinectes sapidus) Abundance Indices Based on Probability Surveys. JABES 22, 481–497 (2017). https://doi.org/10.1007/s13253-017-0295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-017-0295-4

Keywords

Navigation