The Allometric Quarter-Power Scaling Model and Its Applicability to Grand Fir and Eucalyptus Trees

  • Hannah Capes
  • Robert J. Maillardet
  • Thomas G. Baker
  • Christopher J. Weston
  • Don McGuire
  • Ian C. Dumbrell
  • Andrew P. Robinson
Article

Abstract

The use of the allometric model \(y = \beta x ^{\alpha }\) to describe the relative growth of morphological traits of trees is a source of contention in ecology. This is particularly so in a specific form, the West, Brown and Enquist model, which predicts values of \(\alpha \) that are multiples of 1/4 for various allometric relationships—the quarter-power scaling law. We use statistical techniques to test the appropriateness of the quarter-power scaling allometric model in a number of different relative growth relationships of trees. Two separate datasets are used, one of repeated measures of Abies grandis (Grand fir) trees, another of independent measures of Eucalyptus trees. Nonlinear mixed-effects modelling is used to fit allometric models to the datasets. Generalised additive models, equivalence testing and traditional significance testing are used to assess the adequacy of the allometric models fitted and the values of the estimated exponents relative to those predicted by the WBE model. In only one of the five models fitted was there empirical evidence for the WBE-predicted quarter-power exponent. However, the adequacy of the allometric models was generally supported, though a need for further analysis over a larger range of tree ages/sizes is indicated.

Supplementary materials accompanying this paper appear online.

Keywords

Allometric scaling Quarter-power scaling law Nonlinear mixed-effects models Equivalence testing 

Notes

Acknowledgements

The authors are grateful to S. Livesley (the University of Melbourne) and S. Elms (HVP Plantations Pty Ltd) for contributing portions of the analysed datasets. The clarity of the paper has been greatly improved by the thoughtful comments of two anonymous reviewers.

Supplementary material

13253_2017_292_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (pdf 1398 KB)

References

  1. Attiwill, P. (1979). Nutrient cycling in a Euclayptus obliqua (L’Hérit.) forest. III: Growth, biomass and net primary production. Australian Journal of Botany, 27:439–458.CrossRefGoogle Scholar
  2. Coomes, D. A. and Allen, R. B. (2009). Testing the metabolic scaling theory of tree growth. Journal of Ecology, (97):1369–1373.CrossRefGoogle Scholar
  3. Coomes, D. A., Lines, E. R., and Allen, R. B. (2011). Moving on from metabolic scaling theory: hierarchical models of tree growth and asymmetric competition for light. Journal of Ecology, (99):748–756.CrossRefGoogle Scholar
  4. Enquist, B. J. (2002). Universal scaling in tree & vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiology, 22:1045–1064.CrossRefGoogle Scholar
  5. Enquist, B. J., Charnov, G. B. W. E. L., and Brown, J. H. (1999). Allometric scaling of production and life-history variation in vascular plants. Nature, 401:907–911.CrossRefGoogle Scholar
  6. Hastie, T. and Tibshirani, R. (1986). Generalized additive models. Statistical Science, 1(3):297–310.MathSciNetCrossRefMATHGoogle Scholar
  7. Hui, D. and Jackson, R. B. (2007). Uncertainty in allometric exponent estimation: A case study in scaling metabolic rate with body mass. Journal of Theoretical Biology, 249:168–177.MathSciNetCrossRefGoogle Scholar
  8. Huxley, J. S. (1932). Problems of Relative Growth. Foundations of Natural History. The Johns Hopkins University Press.Google Scholar
  9. Lai, J., Yang, B., Lin, D., Kerkhoff, A. J., and Ma, K. (2013). The allometry of coarse root biomass: Log-transformed linear regression or nonlinear regression? PLoS ONE, 8(10):1–8.Google Scholar
  10. Mäkela, A. and Valentine, H. (2006). Crown ratio influences allometric scaling in trees. Ecology, 87(12):2967–2972.CrossRefGoogle Scholar
  11. Mascaro, J., Litton, C. M., Hugehs, R. F., Uowolo, A., and Schnitzer, S. A. (2011). Minimizing bias in biomass allometry: Model selection and log-transformation of data. Biotropica, 43(6):649–653.CrossRefGoogle Scholar
  12. Nygren, P. and Pallardy, S. G. (2008). Applying a universal scaling model to vascular allometry in a single-stemmed, monopodially branching deciduous tree (attim’s model). Tree Physiology, 28:1–10.CrossRefGoogle Scholar
  13. O’Connor, M. P., Agosta, S. J., Hansen, F., Kemp, S. J., Sieg, A. E., McNair, J. N., and Dunham, A. E. (2007). Phylogeny, regression, and the allometry of physiological traits. The American Naturalist, 170:431–442.CrossRefGoogle Scholar
  14. Packard, G. C. (2014). On the use of log-transformation versus nonlinear regression for analyzing biological power laws. Biological Journal of the Linnean Society, 113(4):1167–1178.CrossRefGoogle Scholar
  15. Parkhurst, D. F. (2001). Statistical significance tests: Equivalence and reverse tests should reduce misinterpretation. Bioscience, 51:1051–1057.CrossRefGoogle Scholar
  16. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team (2016). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-128.Google Scholar
  17. Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. Statistics and Computing. Springer-Verlag New York, Inc.Google Scholar
  18. R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  19. Robinson, A. P., Duursma, R. A., and Marshall, J. D. (2005). A regression-based equivalence test for model validation: shifting the burden of proof. Tree Physiology, 25:903–913.CrossRefGoogle Scholar
  20. Robinson, A. P. and Froese, R. E. (2004). Model validation using equivalence tests. Ecological Modelling, 176:349–358.CrossRefGoogle Scholar
  21. Rüger, N. and Condit, R. (2012). Testing metabolic theory with models of tree growth that include light competition. Functional Ecology, 26:759–765.CrossRefGoogle Scholar
  22. Schuirmann, D. L. (1981). On hypothesis testing to determine if the mean of a normal distribution is contained in a known interval. Biometrics, 37:617.Google Scholar
  23. Stage, A. R. (1963). A mathematical approach to polymorphic site index curves for Grand fir. Forest Science, 9(2):167–180.Google Scholar
  24. Stark, S. C., Bentley, L. P., and Enquist, B. J. (2011). Response to coomes & allen (2009) testing the metabolic scaling theory of tree growth. Journal of Ecology, (99):741–747.CrossRefGoogle Scholar
  25. Strauss, R. E. (1993). Problems of Relative Growth, chapter The Study of Allometry Since Huxley, pages xlvii–lxxv. Foundations of Natural History. The Johns Hopkins University Press.Google Scholar
  26. Warton, D. I., Wright, I. J., Falster, D. S., and Westoby, M. (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81:259–291.CrossRefGoogle Scholar
  27. Wellek, S. (2003). Testing Statistical Hypotheses of Equivalence. Chapman & Hall/CRC.Google Scholar
  28. West, G. B., Brown, J. H., and Enquist, B. J. (1999). A general model for the structure and allometry of plant vascular systems. Nature, 400:664–667.CrossRefGoogle Scholar
  29. —— (2000). Scaling in Biology, chapter Quarter-Power Allometric Scaling in Vascular Plants: Functional Basis & Ecological Consequences, pages 167–198. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press.Google Scholar
  30. Westlake, W. J. (1981). Response to Thomas B. L. Kirkwood: Bioequivalence testing — a need to rethink. Biometrics, 37:589–594.CrossRefGoogle Scholar
  31. Wood, S. N. (2006). Generalized Additive Models An Introduction with R. Texts in Statistical Science. Chapman & Hall/CRC.Google Scholar
  32. Xiao, X., White, E. P., Hooten, M. B., and Durham, S. L. (2011). On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology, (92):1887–1894.CrossRefGoogle Scholar

Copyright information

© International Biometric Society 2017

Authors and Affiliations

  • Hannah Capes
    • 1
  • Robert J. Maillardet
    • 2
  • Thomas G. Baker
    • 3
  • Christopher J. Weston
    • 2
  • Don McGuire
    • 4
  • Ian C. Dumbrell
    • 5
  • Andrew P. Robinson
    • 6
  1. 1. Empirica ResearchMelbourneAustralia
  2. 2. University of Melbourne (UOM)ParkvillleAustralia
  3. 3. UOMRichmondAustralia
  4. 4. Synergetic Forestry Services Mount GambierAustralia
  5. 5. Forest Products CommissionKensingtonAustralia
  6. 6. CEBRA, School of BioSciencesUOMParkvillleAustralia

Personalised recommendations