Advertisement

Modelling the Covariance Structure in Marginal Multivariate Count Models: Hunting in Bioko Island

  • W. H. Bonat
  • J. Olivero
  • M. Grande-Vega
  • M. A. Farfán
  • J. E. Fa
Article

Abstract

The main goal of this article is to present a flexible statistical modelling framework to deal with multivariate count data along with longitudinal and repeated measures structures. The covariance structure for each response variable is defined in terms of a covariance link function combined with a matrix linear predictor involving known matrices. In order to specify the joint covariance matrix for the multivariate response vector, the generalized Kronecker product is employed. We take into account the count nature of the data by means of the power dispersion function associated with the Poisson–Tweedie distribution. Furthermore, the score information criterion is extended for selecting the components of the matrix linear predictor. We analyse a data set consisting of prey animals (the main hunted species, the blue duiker Philantomba monticola and other taxa) shot or snared for bushmeat by 52 commercial hunters over a 33-month period in Pico Basilé, Bioko Island, Equatorial Guinea. By taking into account the severely unbalanced repeated measures and longitudinal structures induced by the hunters and a set of potential covariates (which in turn affect the mean and covariance structures), our method can be used to indicate whether there was statistical evidence of a decline in blue duikers and other species hunted during the study period. Determining whether observed drops in the number of animals hunted are indeed true is crucial to assess whether species depletion effects are taking place in exploited areas anywhere in the world. We suggest that our method can be used to more accurately understand the trajectories of animals hunted for commercial or subsistence purposes and establish clear policies to ensure sustainable hunting practices.

Supplementary materials accompanying this paper appear online.

Keywords

Multivariate models Estimating functions Hunting Longitudinal data 

Notes

Acknowledgements

The authors thank Professors Elias Teixeira Krainski, Walmes Marques Zeviani, Fernando Poul Mayer and Paulo Justianiano Ribeiro Jr for their comments and suggestions that substantially improved the article. The first author is supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)-Brazil.

Supplementary material

13253_2017_284_MOESM1_ESM.pdf (621 kb)
Supplementary material 1 (pdf 621 KB)
13253_2017_284_MOESM2_ESM.r (1 kb)
Supplementary material 2 (R 1 KB)
13253_2017_284_MOESM3_ESM.txt (64 kb)
Supplementary material 3 (txt 63 KB)
13253_2017_284_MOESM4_ESM.r (36 kb)
Supplementary material 4 (R 36 KB)

References

  1. Anderlucci, L. and Viroli, C. (2015). Covariance pattern mixture models for the analysis of multivariate heterogeneous longitudinal data, The Annals of Applied Statistics 9(2): 777–800.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Anderson, T. W. (1973). Asymptotically efficient estimation of covariance matrices with linear structure, The Annals of Statistics 1(1): 135–141.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Baccini, A., Barabesi, L. and Stracqualursi, L. (2016). Random variate generation and connected computational issues for the Poisson-Tweedie distribution, Computational Statistics 32(2): 729–748.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bonat, W. H. (2016). mcglm: Multivariate Covariance Generalized Linear Models. R package version 0.3.0. https://github.com/wbonat/mcglm
  5. Bonat, W. H. and Jørgensen, B. (2016). Multivariate covariance generalized linear models, Journal of the Royal Statistical Society: Series C (Applied Statistics) 65(5): 649–675.MathSciNetCrossRefGoogle Scholar
  6. Bonat, W. H., Jørgensen, B., Kokonendji, C. C., Hinde, J. and Démetrio, C. G. B. (2017). Extended Poisson–Tweedie: properties and regression models for count data, Statistical Modelling. to appear.Google Scholar
  7. Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association 88(421): 9–25.zbMATHGoogle Scholar
  8. Carey, V. J. and Wang, Y. (2011). Working covariance model selection for generalized estimating equations, Statistics in Medicine 30(26): 3117–3124.MathSciNetCrossRefGoogle Scholar
  9. Cuenin, J., Jørgensen, B. and Kokonendji, C. C. (2016). Simulations of full multivariate Tweedie with flexible dependence structure, Computational Statistics 31(4): 1477–1492.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Cybis, G. B., Sinsheimer, J. S., Bedford, T., Mather, A. E., Lemey, P. and Suchard, M. A. (2015). Assessing phenotypic correlation through the multivariate phylogenetic latent liability model, The Annals of Applied Statistics 9(2): 969–991.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Demidenko, E. (2013). Mixed Models: Theory and Applications with R, Wiley.Google Scholar
  12. Diggle, P. J., Heagerty, P., Liang, K.-Y. and Zeger, S. L. (2002). Analysis of Longitudinal Data, Oxford Statistical Science Series, Oxford.zbMATHGoogle Scholar
  13. Fa, J. E. and Brown, D. (2009). Impacts of hunting on mammals in African tropical moist forests: a review and synthesis, Mammal Review 39(4): 231–264.CrossRefGoogle Scholar
  14. Fa, J. E., Yuste, J. E. G. and Castelo, R. (2000). Bushmeat markets on Bioko Island as a measure of hunting pressure, Conservation Biology 14(6): 1602–1613.CrossRefGoogle Scholar
  15. Fong, Y., Rue, H. and Wakefield, J. (2010). Bayesian inference for generalized linear mixed models, Biostatistics 11(3): 397–412.CrossRefGoogle Scholar
  16. Grande-Vega, M., Farfán, M. Á., Ondo, A. and Fa, J. E. (2015). Decline in hunter offtake of blue duikers in Bioko Island, Equatorial Guinea, African Journal of Ecology 54(1): 49–58.CrossRefGoogle Scholar
  17. Højsgaard, S., Halekoh, U. and Yan, J. (2006). The R package geepack for Generalized Estimating Equations, Journal of Statistical Software 15(2): 1–11.Google Scholar
  18. Hui, F. K. C., Warton, D. I. and Foster, S. D. (2015). Multi-species distribution modeling using penalized mixture of regressions, Ann. Appl. Stat. 9(2): 866–882.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Jørgensen, B. (1997). The Theory of Dispersion Models, Chapman & Hall, London.zbMATHGoogle Scholar
  20. Jørgensen, B. and Kokonendji, C. (2016). Discrete dispersion models and their Tweedie asymptotics, AStA Advances in Statistical Analysis 100(1): 43–78.MathSciNetCrossRefGoogle Scholar
  21. Klein, N., Kneib, T., Klasen, S. and Lang, S. (2015a). Bayesian structured additive distributional regression for multivariate responses, Journal of the Royal Statistical Society: Series C (Applied Statistics) 64(4): 569–591.Google Scholar
  22. Klein, N., Kneib, T., Lang, S. and Sohn, A. (2015b). Bayesian structured additive distributional regression with an application to regional income inequality in Germany, The Annals of Applied Statistics 9(2): 1024–1052.Google Scholar
  23. Lagona, F., Maruotti, A. and Padovano, F. (2015). Multilevel multivariate modelling of legislative count data, with a hidden markov chain, Journal of the Royal Statistical Society: Series A (Statistics in Society) 178(3): 705–723.MathSciNetCrossRefGoogle Scholar
  24. Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models, Journal of the Royal Statistical Society. Series B (Methodological) 58(4): 619–678.MathSciNetzbMATHGoogle Scholar
  25. Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models, Biometrika 73(1): 13–22.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Manrique-Vallier, D. (2014). Longitudinal mixed membership trajectory models for disability survey data, The Annals of Applied Statistics 8(4): 2268–2291.MathSciNetCrossRefzbMATHGoogle Scholar
  27. Martinez-Beneito, M. A. (2013). A general modelling framework for multivariate disease mapping, Biometrika 100(3): 539–553.MathSciNetCrossRefzbMATHGoogle Scholar
  28. Masarotto, G. and Varin, C. (2012). Gaussian copula marginal regression, Electronic Journal of Statistics 6: 1517–1549.MathSciNetCrossRefzbMATHGoogle Scholar
  29. McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed models, Journal of the American Statistical Association 92(437): 162–170.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Ovaskainen, O. and Soininen, J. (2011). Making more out of sparse data: hierarchical modeling of species communities, Ecology 92(2): 289–295.CrossRefGoogle Scholar
  31. Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix, Biometrika 87(2): 425–435.MathSciNetCrossRefzbMATHGoogle Scholar
  32. R Core Team (2017). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.Google Scholar
  33. Rodrigues-Motta, M., Pinheiro, H. P., Martins, E. G., Araújo, M. S. and dos Reis, S. F. (2013). Multivariate models for correlated count data, Journal of Applied Statistics 40(7): 1586–1596.MathSciNetCrossRefGoogle Scholar
  34. Shi, P. and Valdez, E. A. (2014). Multivariate negative binomial models for insurance claim counts, Insurance: Mathematics and Economics 55(2014): 18–29.MathSciNetzbMATHGoogle Scholar
  35. Stoklosa, J., Gibb, H. and Warton, D. I. (2014). Fast forward selection for generalized estimating equations with a large number of predictor variables, Biometrics 70(1): 110–120.MathSciNetCrossRefzbMATHGoogle Scholar
  36. Tsionas, E. G. (1999). Bayesian analysis of the multivariate Poisson distribution, Communications in Statistics–Theory and Methods 28(2): 431–451.MathSciNetCrossRefzbMATHGoogle Scholar
  37. Verbeke, G., Fieuws, S., Molenberghs, G. and Davidian, M. (2014). The analysis of multivariate longitudinal data: A review, Statistical Methods in Medical Research 23(1): 42–59.MathSciNetCrossRefGoogle Scholar

Copyright information

© International Biometric Society 2017

Authors and Affiliations

  • W. H. Bonat
    • 1
    • 2
  • J. Olivero
    • 3
  • M. Grande-Vega
    • 4
    • 5
  • M. A. Farfán
    • 3
    • 6
  • J. E. Fa
    • 7
    • 8
  1. 1. Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark
  2. 2. Department of Statistics, Centro PolitécnicoParaná Federal UniversityCuritibaBrazil
  3. 3. Grupo de Biogeografía, Diversidad Y Conservación, Departamento de Biologia Animal, Facultad de CienciasUniversidad de MálagaMálagaSpain
  4. 4. Research Group for Sustainable Management Silvanet, Faculty of ForestryTechnical University of Madrid, Ciudad UniversitariaMadridSpain
  5. 5. Asociación EcotonoMadridSpain
  6. 6. BioGea ConsultoresMálagaSpain
  7. 7. Division of Biology and Conservation Ecology, School of Science and the EnvironmentManchester Metropolitan UniversityManchesterUK
  8. 8. Center for International Forestry Research (CIFOR), CIFOR HeadquartersBogorIndonesia

Personalised recommendations