Skip to main content
Log in

Modelling the Covariance Structure in Marginal Multivariate Count Models: Hunting in Bioko Island

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

The main goal of this article is to present a flexible statistical modelling framework to deal with multivariate count data along with longitudinal and repeated measures structures. The covariance structure for each response variable is defined in terms of a covariance link function combined with a matrix linear predictor involving known matrices. In order to specify the joint covariance matrix for the multivariate response vector, the generalized Kronecker product is employed. We take into account the count nature of the data by means of the power dispersion function associated with the Poisson–Tweedie distribution. Furthermore, the score information criterion is extended for selecting the components of the matrix linear predictor. We analyse a data set consisting of prey animals (the main hunted species, the blue duiker Philantomba monticola and other taxa) shot or snared for bushmeat by 52 commercial hunters over a 33-month period in Pico Basilé, Bioko Island, Equatorial Guinea. By taking into account the severely unbalanced repeated measures and longitudinal structures induced by the hunters and a set of potential covariates (which in turn affect the mean and covariance structures), our method can be used to indicate whether there was statistical evidence of a decline in blue duikers and other species hunted during the study period. Determining whether observed drops in the number of animals hunted are indeed true is crucial to assess whether species depletion effects are taking place in exploited areas anywhere in the world. We suggest that our method can be used to more accurately understand the trajectories of animals hunted for commercial or subsistence purposes and establish clear policies to ensure sustainable hunting practices.

Supplementary materials accompanying this paper appear online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderlucci, L. and Viroli, C. (2015). Covariance pattern mixture models for the analysis of multivariate heterogeneous longitudinal data, The Annals of Applied Statistics 9(2): 777–800.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, T. W. (1973). Asymptotically efficient estimation of covariance matrices with linear structure, The Annals of Statistics 1(1): 135–141.

    Article  MathSciNet  MATH  Google Scholar 

  • Baccini, A., Barabesi, L. and Stracqualursi, L. (2016). Random variate generation and connected computational issues for the Poisson-Tweedie distribution, Computational Statistics 32(2): 729–748.

    Article  MathSciNet  MATH  Google Scholar 

  • Bonat, W. H. (2016). mcglm: Multivariate Covariance Generalized Linear Models. R package version 0.3.0. https://github.com/wbonat/mcglm

  • Bonat, W. H. and Jørgensen, B. (2016). Multivariate covariance generalized linear models, Journal of the Royal Statistical Society: Series C (Applied Statistics) 65(5): 649–675.

    Article  MathSciNet  Google Scholar 

  • Bonat, W. H., Jørgensen, B., Kokonendji, C. C., Hinde, J. and Démetrio, C. G. B. (2017). Extended Poisson–Tweedie: properties and regression models for count data, Statistical Modelling. to appear.

  • Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association 88(421): 9–25.

    MATH  Google Scholar 

  • Carey, V. J. and Wang, Y. (2011). Working covariance model selection for generalized estimating equations, Statistics in Medicine 30(26): 3117–3124.

    Article  MathSciNet  Google Scholar 

  • Cuenin, J., Jørgensen, B. and Kokonendji, C. C. (2016). Simulations of full multivariate Tweedie with flexible dependence structure, Computational Statistics 31(4): 1477–1492.

    Article  MathSciNet  MATH  Google Scholar 

  • Cybis, G. B., Sinsheimer, J. S., Bedford, T., Mather, A. E., Lemey, P. and Suchard, M. A. (2015). Assessing phenotypic correlation through the multivariate phylogenetic latent liability model, The Annals of Applied Statistics 9(2): 969–991.

    Article  MathSciNet  MATH  Google Scholar 

  • Demidenko, E. (2013). Mixed Models: Theory and Applications with R, Wiley.

  • Diggle, P. J., Heagerty, P., Liang, K.-Y. and Zeger, S. L. (2002). Analysis of Longitudinal Data, Oxford Statistical Science Series, Oxford.

    MATH  Google Scholar 

  • Fa, J. E. and Brown, D. (2009). Impacts of hunting on mammals in African tropical moist forests: a review and synthesis, Mammal Review 39(4): 231–264.

    Article  Google Scholar 

  • Fa, J. E., Yuste, J. E. G. and Castelo, R. (2000). Bushmeat markets on Bioko Island as a measure of hunting pressure, Conservation Biology 14(6): 1602–1613.

    Article  Google Scholar 

  • Fong, Y., Rue, H. and Wakefield, J. (2010). Bayesian inference for generalized linear mixed models, Biostatistics 11(3): 397–412.

    Article  Google Scholar 

  • Grande-Vega, M., Farfán, M. Á., Ondo, A. and Fa, J. E. (2015). Decline in hunter offtake of blue duikers in Bioko Island, Equatorial Guinea, African Journal of Ecology 54(1): 49–58.

    Article  Google Scholar 

  • Højsgaard, S., Halekoh, U. and Yan, J. (2006). The R package geepack for Generalized Estimating Equations, Journal of Statistical Software 15(2): 1–11.

    Google Scholar 

  • Hui, F. K. C., Warton, D. I. and Foster, S. D. (2015). Multi-species distribution modeling using penalized mixture of regressions, Ann. Appl. Stat. 9(2): 866–882.

    Article  MathSciNet  MATH  Google Scholar 

  • Jørgensen, B. (1997). The Theory of Dispersion Models, Chapman & Hall, London.

    MATH  Google Scholar 

  • Jørgensen, B. and Kokonendji, C. (2016). Discrete dispersion models and their Tweedie asymptotics, AStA Advances in Statistical Analysis 100(1): 43–78.

    Article  MathSciNet  Google Scholar 

  • Klein, N., Kneib, T., Klasen, S. and Lang, S. (2015a). Bayesian structured additive distributional regression for multivariate responses, Journal of the Royal Statistical Society: Series C (Applied Statistics) 64(4): 569–591.

  • Klein, N., Kneib, T., Lang, S. and Sohn, A. (2015b). Bayesian structured additive distributional regression with an application to regional income inequality in Germany, The Annals of Applied Statistics 9(2): 1024–1052.

  • Lagona, F., Maruotti, A. and Padovano, F. (2015). Multilevel multivariate modelling of legislative count data, with a hidden markov chain, Journal of the Royal Statistical Society: Series A (Statistics in Society) 178(3): 705–723.

    Article  MathSciNet  Google Scholar 

  • Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models, Journal of the Royal Statistical Society. Series B (Methodological) 58(4): 619–678.

    MathSciNet  MATH  Google Scholar 

  • Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models, Biometrika 73(1): 13–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Manrique-Vallier, D. (2014). Longitudinal mixed membership trajectory models for disability survey data, The Annals of Applied Statistics 8(4): 2268–2291.

    Article  MathSciNet  MATH  Google Scholar 

  • Martinez-Beneito, M. A. (2013). A general modelling framework for multivariate disease mapping, Biometrika 100(3): 539–553.

    Article  MathSciNet  MATH  Google Scholar 

  • Masarotto, G. and Varin, C. (2012). Gaussian copula marginal regression, Electronic Journal of Statistics 6: 1517–1549.

    Article  MathSciNet  MATH  Google Scholar 

  • McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed models, Journal of the American Statistical Association 92(437): 162–170.

    Article  MathSciNet  MATH  Google Scholar 

  • Ovaskainen, O. and Soininen, J. (2011). Making more out of sparse data: hierarchical modeling of species communities, Ecology 92(2): 289–295.

    Article  Google Scholar 

  • Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix, Biometrika 87(2): 425–435.

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2017). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

  • Rodrigues-Motta, M., Pinheiro, H. P., Martins, E. G., Araújo, M. S. and dos Reis, S. F. (2013). Multivariate models for correlated count data, Journal of Applied Statistics 40(7): 1586–1596.

    Article  MathSciNet  Google Scholar 

  • Shi, P. and Valdez, E. A. (2014). Multivariate negative binomial models for insurance claim counts, Insurance: Mathematics and Economics 55(2014): 18–29.

    MathSciNet  MATH  Google Scholar 

  • Stoklosa, J., Gibb, H. and Warton, D. I. (2014). Fast forward selection for generalized estimating equations with a large number of predictor variables, Biometrics 70(1): 110–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsionas, E. G. (1999). Bayesian analysis of the multivariate Poisson distribution, Communications in Statistics–Theory and Methods 28(2): 431–451.

    Article  MathSciNet  MATH  Google Scholar 

  • Verbeke, G., Fieuws, S., Molenberghs, G. and Davidian, M. (2014). The analysis of multivariate longitudinal data: A review, Statistical Methods in Medical Research 23(1): 42–59.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Professors Elias Teixeira Krainski, Walmes Marques Zeviani, Fernando Poul Mayer and Paulo Justianiano Ribeiro Jr for their comments and suggestions that substantially improved the article. The first author is supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Bonat.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonat, W.H., Olivero, J., Grande-Vega, M. et al. Modelling the Covariance Structure in Marginal Multivariate Count Models: Hunting in Bioko Island. JABES 22, 446–464 (2017). https://doi.org/10.1007/s13253-017-0284-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-017-0284-7

Keywords

Navigation