Water flow probabilistic predictions based on a rainfall–runoff simulator: a two-regime model with variable selection

  • Marie Courbariaux
  • Pierre Barbillon
  • Éric Parent
Article

Abstract

Probabilistic forecasting aims at producing a predictive distribution of the quantity of interest instead of a single best guess point-wise estimate. With regard to water flow forecasts, the two main sources of uncertainty stem from unknown future rainfall and temperature (input error, i.e., meteorological uncertainty) and from the inadequacy of the deterministic simulator mimicking the rainfall–runoff (RR) transformation (hydrological uncertainty or RR error). These two sources of uncertainty can be dealt with separately and only the latter will be considered here. Only hydrological uncertainty is at stake when recorded meteorological data (instead of meteorological forecasts) are used as inputs to feed the RR simulator (RRS) for probabilistic predictions. The predictive performance of the RRS may strongly depend on the hydrological regimes: rapid flood variations induce large errors of anticipation but a series of dry events will translate into a much more smoother sequence of river levels due to the easily predictable behavior of the soil reservoir emptying. Consequently, a model with several regimes adapted to different error structures appears as a solution to cope with the issue of unstationary predictive variance. The river regime is modeled as a latent variable, the distribution of which is based on additional outputs of the RRS to be selected. Inference is performed by the EM algorithm with both steps leading to explicit analytic expressions. Asymptotic confidence regions for the estimates are provided within the same EM framework. Model selection is also performed, including the length of the model memory as well as the choice of explanatory variables for the latent regimes. The model is applied to a series of water flow forecasts routinely issued by two hydroelectricity producers in France and in Québec and compared with their present operational forecasting methods.

Keywords

EM algorithm Probit model Model uncertainty Probabilistic forecasts Hydrology Rainfall–runoff model 

References

  1. Ailliot, P. and Monbet, V. (2012). Markov-switching autoregressive models for wind time series. Environmental Modelling & Software, 30:92–101.CrossRefGoogle Scholar
  2. Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422):669–679.MathSciNetCrossRefMATHGoogle Scholar
  3. Andreassian, V., Bergstrom, S., Chahinian, N., Duan, Q., Gusev, Y., Littlewood, I., Mathevet, T., Michel, C., Montanari, A., Moretti, G., et al. (2006). Catalogue of the models used in MOPEX 2004/2005. IAHS publication, 307:41.Google Scholar
  4. Bates, B. C. and Campbell, E. P. (2001). A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resources Research, 37(4):937–947.CrossRefGoogle Scholar
  5. Box, G. and Jenkins, G. (1970). Time Series Analysis: Forecasting and Control. Holden–Day, San Francisco, Ca.MATHGoogle Scholar
  6. Box, G. E. and Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), pages 211–252.Google Scholar
  7. Chib, S. (1996). Calculating posterior distributions and modal estimates in markov mixture models. Journal of Econometrics, 75(1):79–97.MathSciNetCrossRefMATHGoogle Scholar
  8. Collet, J., Épiard, X., and Coudray, P. (2009). Simulating hydraulic inflows using PCA and ARMAX. The European Physical Journal-Special Topics, 174(1):125–134.CrossRefGoogle Scholar
  9. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (methodological), pages 1–38.Google Scholar
  10. Engeland, K., Renard, B., Steinsland, I., and Kolberg, S. (2010). Evaluation of statistical models for forecast errors from the HBV model. Journal of Hydrology, 384(1):142–155.CrossRefGoogle Scholar
  11. Evin, G., Kavetski, D., Thyer, M., and Kuczera, G. (2013). Pitfalls and improvements in the joint inference of heteroscedasticity and autocorrelation in hydrological model calibration. Water Resources Research, 49(7):4518–4524.CrossRefGoogle Scholar
  12. Evin, G., Thyer, M., Kavetski, D., McInerney, D., and Kuczera, G. (2014). Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity. Water Resources Research, 50(3):2350–2375.CrossRefGoogle Scholar
  13. Fortin, V. (2000). Le modèle météo-apport HSAMI: historique, théorie et application. Institut de recherche d’Hydro-Québec, Varennes.Google Scholar
  14. Furrer, E. M., Jacques, C., and Favre, A.-C. (2006). Short term discharge prediction using a Markovian regime switching model. Technical report, INRS-ETE.Google Scholar
  15. Gailhard, J. (2014). Algorithme de recalage associé à MORDOR diagnostic et proposition d’améliorations. Note Technique Interne H-44200965-2014-000075, EDF-DTG.Google Scholar
  16. Gelfand, A. E. and Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410):398–409.MathSciNetCrossRefMATHGoogle Scholar
  17. Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477):359–378.MathSciNetCrossRefMATHGoogle Scholar
  18. Gneiting, T., Raftery, A. E., Westveld, A. H., and Goldman, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review, 133(5):1098–1118.CrossRefGoogle Scholar
  19. Hemri, S., Fundel, F., and Zappa, M. (2013). Simultaneous calibration of ensemble river flow predictions over an entire range of lead times. Water Resources Research, 49(10):6744–6755.CrossRefGoogle Scholar
  20. Hemri, S., Lisniak, D., and Klein, B. (2015). Multivariate postprocessing techniques for probabilistic hydrological forecasting. Water Resources Research, 51(9):7436–7451.CrossRefGoogle Scholar
  21. Hersbach, H. (2000). Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather and Forecasting, 15(5):559–570.CrossRefGoogle Scholar
  22. Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994). Continuous Univariate Distributions, vol. 1–2. New York: John Wiley & Sons.Google Scholar
  23. Krzysztofowicz, R. (2002). Bayesian system for probabilistic river stage forecasting. Journal of Hydrology, 268(1):16–40.CrossRefGoogle Scholar
  24. Kuczera, G. (1983). Improved parameter inference in catchment models: 1. evaluating parameter uncertainty. Water Resources Research, 19(5):1151–1162.CrossRefGoogle Scholar
  25. Li, M., Wang, Q., Bennett, J., and Robertson, D. (2015). A strategy to overcome adverse effects of autoregressive updating of streamflow forecasts. Hydrology and Earth System Sciences, 19(1):1–15.CrossRefGoogle Scholar
  26. Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society. Series B, 44(2):226–233.MathSciNetMATHGoogle Scholar
  27. Lu, Z.-Q. and Berliner, L. M. (1999). Markov switching time series models with application to a daily runoff series. Water Resources Research, 35(2):523–534.CrossRefGoogle Scholar
  28. Matheson, J. E. and Winkler, R. L. (1976). Scoring rules for continuous probability distributions. Management Science, 22(10):1087–1096.CrossRefMATHGoogle Scholar
  29. Mathevet, T. (2010). Erreur empirique de modèle. Note Technique Interne D4165/NT/2010-00395-A, EDF-DTG.Google Scholar
  30. Morawietz, M., Xu, C.-Y., Gottschalk, L., and Tallaksen, L. M. (2011). Systematic evaluation of autoregressive error models as post-processors for a probabilistic streamflow forecast system. Journal of Hydrology, 407(1):58–72.CrossRefGoogle Scholar
  31. Perreault, L., Garçon, R., and Gaudet, J. (2007). Analyse de séquences de variables aléatoires hydrologiques à l’aide de modèles de changement de régime exploitant des variables atmosphériques. La Houille Blanche (6):111–123.CrossRefGoogle Scholar
  32. Pianosi, F. and Raso, L. (2012). Dynamic modeling of predictive uncertainty by regression on absolute errors. Water Resources Research, 48(3).Google Scholar
  33. Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review, 133(5).Google Scholar
  34. Schaefli, B., Talamba, D. B., and Musy, A. (2007). Quantifying hydrological modeling errors through a mixture of normal distributions. Journal of Hydrology, 332(3):303–315.CrossRefGoogle Scholar
  35. Schoups, G. and Vrugt, J. A. (2010). A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors. Water Resources Research, 46(10).Google Scholar
  36. Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461–464.MathSciNetCrossRefMATHGoogle Scholar
  37. Sorooshian, S. and Dracup, J. A. (1980). Stochastic parameter estimation procedures for hydrologie rainfall-runoff models: Correlated and heteroscedastic error cases. Water Resources Research, 16(2):430–442.CrossRefGoogle Scholar
  38. Thyer, M., Kuczera, G., and Wang, Q. (2002). Quantifying parameter uncertainty in stochastic models using the Box-Cox transformation. Journal of Hydrology, 265(1):246–257.CrossRefGoogle Scholar
  39. Todini, E. (2008). A model conditional processor to assess predictive uncertainty in flood forecasting. International Journal of River Basin Management, 6(2):123–137.CrossRefGoogle Scholar
  40. Vrugt, J. A. and Robinson, B. A. (2007). Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging. Water Resources Research, 43(1).Google Scholar
  41. Wang, Q., Shrestha, D. L., Robertson, D., and Pokhrel, P. (2012). A log-sinh transformation for data normalization and variance stabilization. Water Resources Research, 48(5).Google Scholar

Copyright information

© International Biometric Society 2017

Authors and Affiliations

  1. 1.UMR MIA-Paris, AgroParisTech, INRAUniversité Paris-SaclayParisFrance

Personalised recommendations