Skip to main content

Advertisement

Log in

A Non-Gaussian Spatial Generalized Linear Latent Variable Model

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bardossy, A. (2006), “Copula-Based Geostatistical Models for Groundwater Quality Parameters,” Water Resources Research, 42, 1–12.

    Google Scholar 

  • Bartholomew, D. J., Knott, M., and Moustaki, I. (2011), Latent Variable Models and Factor Analysis: A Unified Approach, John Wiley Series in Probability and Statistics.

    Book  MATH  Google Scholar 

  • Bell, M., McDermott, A., Zeger, S., Samet, J., and Dominici, F. (2005), “Ozone and Short-Term Mortality in 95 US Urban Communities, 1987–2000,” Journal of the American Medical Association, 292, 2371–2378.

    Google Scholar 

  • Berntsen, J., Espelid, T. O., and Genz, A. (1991), “An Adaptive Algorithm for the Approximate Calculation of Multiple Integrals,” ACM Transactions on Mathematical Software, 17, 437–451.

    Article  MathSciNet  MATH  Google Scholar 

  • Bevilacqua, M., Gaetan, C., Mateu, J., and Porcu, E. (2012), “Estimating Space and Space-Time Covariance Functions: A Weighted Composite Likelihood Approach,” Journal of the American Statistical Association, 107 (497), 268–280.

    Article  Google Scholar 

  • Booth, J. G., and Hobert, J. P. (1999), “Maximizing Generalized Linear Mixed Model Likelihoods With an Automated Monte Carlo EM Algorithm,” Journal of the Royal Statistical Society. Series B. Statistical Methodology, 61 (1), 265–285.

    Article  MathSciNet  MATH  Google Scholar 

  • Brown, P. E., Diggle, P. J., and Henderson, R. (2003), “A Non-Gaussian Spatial Process Model for Opacity of Flocculated Paper,” Scandinavian Journal of Statistics, 30 (2), 355–368.

    Article  MathSciNet  MATH  Google Scholar 

  • Christensen, W. F., and Amemiya, Y. (2002), “Latent Variable Analysis of Multivariate Spatial Data,” Journal of the American Statistical Association, 97 (457), 302–317.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D. R., and Reid, N. (2004), “A Note on Pseudo-Likelihood Constructed From Marginal Densities,” Biometrika, 91, 729–737.

    Article  MathSciNet  MATH  Google Scholar 

  • Eickhoff, J. C., Zhu, J., and Amemiya, Y. (2004), “On the Simulation Size and the Convergence of the Monte-Carlo EM Algorithm via Likelihood-Based Distances,” Statistics & Probability Letters, 67, 161–171.

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, X., and Song, P. X.-K. (2010), “Composite Likelihood Bayesian Information Criteria for Model Selection in High-Dimensional Data,” Journal of the American Statistical Association, 105 (492), 1531–1540.

    Article  MathSciNet  Google Scholar 

  • Gelfand, A. E., Kottas, A., and MacEachern, S. N. (2005), “Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing,” Journal of the American Statistical Association, 100 (471), 1021–1035.

    Article  MathSciNet  MATH  Google Scholar 

  • Genz, A., and Malik, A. (1980), “An Adaptive Algorithm for Numerical Integration Over an N-Dimensional Rectangular Region,” Journal of Computational and Applied Mathematics, 6, 295–302.

    Article  MATH  Google Scholar 

  • Geweke, J. (1996), Monte Carlo Simulation and Numerical, Integration, Vol. 1. eds. H. M. Amman, D. A. Kendrick, and J. Rust. Amsterdam: Elsevier.

    Google Scholar 

  • Gneiting, T., Genton, M. G., and Guttorp, P. (2007), “Geostatistical Space-Time Models, Stationarity, Separability and Full Symmetry,” in Statistical Methods for Spatio-Temporal Systems, eds. B. Finkenstaedt, L. Held, and V. Isham, New York: Chapman & Hall/CRC, pp. 151–175.

    Google Scholar 

  • Hogan, J. W., and Tchernis, R. (2004), “Bayesian Factor Analysis for Spatially Correlated Data, With Application to Summarizing Area-Level Material Deprivation From Census Data,” Journal of the American Statistical Association, 99 (466), 314–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P. (2004). “Generalized Linear Latent Variables Models: Estimation, Inference and Empirical Analysis of Financial Data,” unpublished doctoral dissertation, University of Geneva.

  • Huber, P., Ronchetti, E., and Victoria-Feser, M.-P. (2004), “Estimation of Generalized Linear Latent Variable Models,” Journal of the Royal Statistical Society, Series B, 66, 893–908.

    Article  MathSciNet  MATH  Google Scholar 

  • Irincheeva, I., Cantoni, E., and Genton, M. G. (2012), “Generalized Linear Latent Variable Models With Flexible Distribution of Latent Variables,” Scandinavian Journal of Statistics, doi:10.1111/j.1467-9469.2011.00777.x.

    Google Scholar 

  • Johnson, S. G., and Narasimhan, B. (2009), “Cubature: Adaptive Multivariate Integration Over Hypercubes” [Computer Software Manual].

  • Kazianka, H., and Pilz, J. (2011), “Bayesian Spatial Modeling and Interpolation Using Copulas,” Computers and Geosciences, 37 (3), 310–319.

    Article  Google Scholar 

  • Li, H., Scarsini, M., and Shaked, M. (1996), “Linkages: A Tool for the Construction of Multivariate Distributions With Given Nonoverlapping Multvariate Margins,” Journal of Multivariate Analysis, 56, 20–41.

    Article  MathSciNet  MATH  Google Scholar 

  • Lopes, H. F., Gamerman, D., and Salazar, E. (2011), “Generalized Spatial Dynamic Factor Models,” Computational Statistics & Data Analysis, 55, 1319–1330.

    Article  MathSciNet  Google Scholar 

  • Ma, Y., and Genton, M. G. (2010), “Explicit Estimating Equations for Semiparametric Generalized Linear Latent Variable Models,” Journal of the Royal Statistical Society, Series B, 72, 475–495.

    Article  MathSciNet  Google Scholar 

  • Magnus, J. R., and Neudecker, H. (1988), Matrix Differential Calculus With Applications in Econometrics and Statistics, New York: Wiley.

    MATH  Google Scholar 

  • Minozzo, M., and Fruttini, D. (2004), “Loglinear Spatial Factor Analysis: An Application to Diabetes Mellitus Complications,” Environmetrics, 15 (5), 423–434.

    Article  Google Scholar 

  • Montanari, A., and Viroli, C. (2010a), “Heteroscedastic Factor Mixture Analysis,” Statistical Modelling, 10 (4), 441–460.

    Article  MathSciNet  Google Scholar 

  • — (2010b), “A Skew-Normal Factor Model for the Analysis of Student Satisfaction Towards University Courses,” Journal of Applied Statistics, 43, 473–487.

    Article  MathSciNet  Google Scholar 

  • Nelsen, R. B. (2006), An Introduction to Copulas (2nd ed.), Berlin: Springer.

    MATH  Google Scholar 

  • Peng, R., Dominici, F., Pastor-Barriuso, R., Zeger, S., and Samet, J. (2005), “Seasonal Analyses of Air Pollution and Mortality in 100 U.S. Cities,” American Journal of Epidemiology, 161 (6), 585–594.

    Article  Google Scholar 

  • R Development Core Team (2011). “R: A Language and Environment for Statistical Computing” [Computer software manual], Vienna, Austria. Available from http://www.R-project.org.

  • Reich, B. J., and Bandyopadhyay, D. (2010), “A Latent Factor Model for Spatial Data With Informative Missingness,” Annals of Applied Statistics, 4 (1), 439–459.

    Article  MathSciNet  MATH  Google Scholar 

  • Rue, H., and Held, L. (2005), Gaussian Markov Random Fields: Theory and Applications, New York: Chapman & Hall/CRC.

    Book  MATH  Google Scholar 

  • Sammel, M., Ryan, L., and Legler, J. (1997), “Latent Variable Models for Mixed Discrete and Continuous Outcomes,” Journal of the Royal Statistical Society, Series B, 59, 667–678.

    Article  MATH  Google Scholar 

  • Shun, Z., and McCullagh, P. (1995), “Laplace Approximation of High Dimensional Integrals,” Journal of the Royal Statistical Society, Series B, 57 (4), 749–760.

    MathSciNet  MATH  Google Scholar 

  • Varin, C., Høst, G., and Skare, Ø. (2005), “Pairwise Likelihood Inference in Spatial Generalized Linear Mixed Models,” Computational Statistics & Data Analysis, 49 (4), 1173–1191.

    Article  MathSciNet  MATH  Google Scholar 

  • Varin, C., Reid, N., and Firth, D. (2011), “An Overview of Composite Likelihood Methods,” Statistica Sinica, 21, 5–42.

    MathSciNet  MATH  Google Scholar 

  • Varin, C., and Vidoni, P. (2005), “A Note on Composite Likelihood Inference and Model Selection,” Biometrika, 92 (3), 519–528.

    Article  MathSciNet  MATH  Google Scholar 

  • Verbeke, G., and Lesaffre, E. (1996), “A Linear Mixed-Effects Model With Heterogeneity in the Random-Effects Population,” Journal of the American Statistical Association, 91 (433), 217–221.

    Article  MATH  Google Scholar 

  • Wang, F., and Wall, M. M. (2003), “Generalized Common Spatial Factor Model,” Biostatistics, 4 (4), 569–582.

    Article  MATH  Google Scholar 

  • Welty, L., and Zeger, S. (2005), “Are the Acute Effects of PM10 on Mortality in NMMAPS the Result of Inadequate Control for Weather and Season? A Sensitivity Analysis Using Flexible Distributed Lag Models,” American Journal of Epidemiology, 162 (1), 80–88.

    Article  Google Scholar 

  • Zhu, J., Eickhoff, J., and Yan, P. (2005), “Generalized Linear Latent Variable Models for Repeated Measures of Spatially Correlated Multivariate Data,” Biometrics, 61 (3), 674–683.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Irincheeva.

Additional information

The research was carried out while the first author was a Ph.D. Student at the University of Geneva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irincheeva, I., Cantoni, E. & Genton, M.G. A Non-Gaussian Spatial Generalized Linear Latent Variable Model. JABES 17, 332–353 (2012). https://doi.org/10.1007/s13253-012-0099-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-012-0099-5

Key Words

Navigation