The Role of Weather in Meningitis Outbreaks in Navrongo, Ghana: A Generalized Additive Modeling Approach

  • Vanja Dukić
  • Mary Hayden
  • Abudulai Adams Forgor
  • Tom Hopson
  • Patricia Akweongo
  • Abraham Hodgson
  • Andrew Monaghan
  • Christine Wiedinmyer
  • Tom Yoksas
  • Madeleine C. Thomson
  • Sylwia Trzaska
  • Raj Pandya
Article

Abstract

Bacterial (meningococcal) meningitis is a devastating infectious disease with outbreaks occurring annually during the dry season in locations within the ‘Meningitis Belt’, a region in sub-Saharan Africa stretching from Ethiopia to Senegal. Meningococcal meningitis occurs from December to May in the Sahel with large epidemics every 5–10 years and attack rates of up to 1000 infections per 100,000 people. High temperatures coupled with low humidity may favor the conversion of carriage to disease as the meningococcal bacteria in the nose and throat are better able to cross the mucosal membranes into the blood stream. Similarly, respiratory diseases such as influenza and pneumonia might weaken the immune defenses and add to the mucosa damage. Although the transmission dynamics are poorly understood, outbreaks regularly end with the onset of the rainy season and may begin anew with the following dry season. In this paper, we employ a generalized additive modeling approach to assess the association between number of reported meningitis cases and a set of weather variables (relative humidity, rain, wind, sunshine, maximum and minimum temperature). The association is adjusted for air quality (dust, carbon monoxide), as well as varying degrees of unobserved time-varying confounding processes that co-vary with both the disease incidence and weather. We present the analysis of monthly reported meningitis counts in Navrongo, Ghana, from 1998–2008.

Key Words

Africa Ghana GAM Humidity Meningitis Temperature Weather 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besancenot, J. P., Boko, M., and Oke, P. C. (1997), “Weather Conditions and Cerebrospinal Meningitis in Benin (Gulf of Guinea, West Africa),” European Journal of Epidemiology, 13 (7), 807–815. CrossRefGoogle Scholar
  2. Cheesbrough, J. S., Morse, A. P., and Green, S. D. R. (1995), “Meningococcal Meningitis and Carriage in Western Zaire—a Hypoendemic Zone Related to Climate,” Epidemiology and Infection, 114 (1), 75–92. CrossRefGoogle Scholar
  3. Christensen, J. H., et al. (2007), “Regional Climate Projections,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds. S. Solomon et al., Cambridge: Cambridge University Press. Google Scholar
  4. Cuevas, L. E., et al. (2007), “Risk Mapping and Early Warning Systems for the Control of Meningitis in Africa,” Vaccine, 25, A12–A17. CrossRefGoogle Scholar
  5. Dominici, F., Samet, J. M., and Zeger, S. L. (2000), “Combining Evidence on Air Pollution and Daily Mortality from the 20 Largest US Cities: A Hierarchical Modeling Strategy,” Journal of the Royal Statistical Society, Series A, 163 (3), 263–284. Google Scholar
  6. Dominici, F., McDermott, A., and Hastie, T. J. (2004), “Improved Semiparametric Time Series Models of Air Pollution and Mortality,” Journal of the American Statistical Association, 99 (468), 938–948. MathSciNetMATHCrossRefGoogle Scholar
  7. Greenwood, B. M., Blakebrough, I. S., Bradley, A. K., Wali, S., and Whittle, H. C. (1984), “Meningococcal Disease and Season in Sub-Saharan Africa,” Lancet, 1, 1339–1342. CrossRefGoogle Scholar
  8. Greenwood, B. M., Greenwood, A. M., and Bradley, A. K., et al. (1987), “Factors Influencing the Susceptibility to Meningococcal Disease During an Epidemic in The Gambia, West Africa,” The Journal of Infectious Diseases, 14, 167–184. Google Scholar
  9. Greenwood, B. (1999), “Meningococcal Meningitis in Africa,” Transactions of the Royal Society of Tropical Medicine and Hygiene, 93 (4), 341–353. MathSciNetCrossRefGoogle Scholar
  10. Hastie, T., and Tibshirani, R. (1999), Generalized Additive Models, London: Chapman & Hall. Google Scholar
  11. Hayden, M. H., Dalaba, M., Awine, T., Akweongo, P., Hodgson, A., Nyaaba, G., Anesaba, D., Pelzman, J., and Pandya, R. (in preparation for submission to the AJTMH), “Knowledge, Attitudes and Practices Related to Meningitis in Northern Ghana.” Google Scholar
  12. Hodgson, A., Smith, T., Gagneux, S., Adjuik, M., Pluschke, G., Kumasenu Mensah, N., Binka, F., and Genton, B. (2001), “Risk Factors for Meningococcal Meningitis in Northern Ghana,” Transactions of the Royal Society of Tropical Medicine and Hygiene, 95, 477–480. CrossRefGoogle Scholar
  13. Lapeyssonnie, L. (1963), “Cerebrospinal Meningitis in Africa,” Bulletin of the World Health Organization, 28, 3–114. Google Scholar
  14. Leimkugel, J., Hodgson, A., Adams Forgor, A., Pfluger, V., Dangy, J. P., Smith, T., Achtman, M., Gagneux, S., and Pluschke, G. (2007), “Clonal Waves of Neisseria Colonisation and Disease in the African Meningitis Belt: Eight-Year Longitudinal Study in Northern Ghana,” PLoS Medicine, 4 (3), 535–544. CrossRefGoogle Scholar
  15. Molesworth, A. M., Cuevas, L., and Thomson, M. C. (2002), Forecasting Meningitis Epidemics in Africa, Liverpool: LSTM. Google Scholar
  16. Molesworth, A. M., Cuevas, L. E., Connor, S. J., Morse, A. P., and Thomson, M. C. (2003), “Environmental Risk and Meningitis Epidemics in Africa,” Emerging Infectious Diseases, 9 (10), 1287–1293. CrossRefGoogle Scholar
  17. Moore, P. S., Reeves, M. W., Schwartz, B., Gellin, B. G., and Broome, C. V. (1989), “Intercontinental Spread of an Epidemic Group A Neisseria Meningitidis Strain,” Lancet, 2, 260–263. CrossRefGoogle Scholar
  18. Moore, P. S., Hierholzer, J., and DeWitt, W., et al. (1990), “Respiratory Viruses and Mycoplasma as Cofactors for Epidemic Group A Meningococcal Meningitis,” Journal of the American Medical Association, 264, 1271–1275. CrossRefGoogle Scholar
  19. Moore, P. (1992), “Meningococcal Meningitis in Sub-Saharan Africa: A Model for the Epidemic Process,” Clinical Infectious Diseases, 14, 515–525. CrossRefGoogle Scholar
  20. Nyarko, P., Wontuo, P., Nazzar, A., Phillips, J., Ngom, P., et al. (2002), Navrongo DSS Ghana. Population, Health and Survival at INDEPTH Sites, Accra (Ghana): INDEPTH, Vol. 1. Available at: http://www.indepth-network.net/dss_site_profiles/navrongo.
  21. Peng, R. D., Dominici, F., and Louis, T. A. (2006), “Model Choice in Time Series Studies of Air Pollution and Mortality,” Journal of the Royal Statistical Society, Series A, 169 (2), 179–203. MathSciNetGoogle Scholar
  22. Roberts, L. (2008), “An ill Wind, Bringing Meningitis,” Science, 320 (5884), 1710–1715. CrossRefGoogle Scholar
  23. Schwartz, J. (1994a), “Nonparametric Smoothing in the Analysis of Air Pollution and Respiratory Illness,” Canadian Journal of Statistics, 22, 471–487. CrossRefGoogle Scholar
  24. — (1994b), “PM10, Ozone, and Hospital Admissions for the Elderly in Minneapolis-St. Paul, Minnesota,” Archives of Environmental Health, 49, 366–374. CrossRefGoogle Scholar
  25. Sultan, B. et al. (2005a), “Climate Drives the Meningitis Epidemics Onset in West Africa,” PLoS Medicine, 2 (1), 43–49. CrossRefGoogle Scholar
  26. Sultan, B. (2005b), “Influence of Climate Upon the Meningitis Onset in West Africa,” Medicine Sciences, 21 (5), 470–471. Google Scholar
  27. Sultan, B., Labadi, K., Guegan, J. F., and Janicot, S. (2005c), “Climate Drives the Meningitis Epidemics Onset in West Africa,” PLoS Medicine, 2, e6. CrossRefGoogle Scholar
  28. Sultan, B., Chiapello, I., and Aouam, M., (2007), “Le Rôle du Climat et des Aérosols sur les Épidémies de Méningite en Afrique de l’Ouest,” Colloque MSG, 13-14, Dijon. Google Scholar
  29. Thomson, M. C., et al. (2006), “Potential of Environmental Models to Predict Meningitis Epidemics in Africa,” Tropical Medicine and International Health, 11 (6), 781–788. MathSciNetCrossRefGoogle Scholar
  30. Trenberth, K. E., et al. (2007), “Observations: Surface and Atmospheric Climate Change,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds. S. Solomon et al., Cambridge: Cambridge University Press. Google Scholar
  31. Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J. (2011), “The Fire Inventory from NCAR (FINN)—A High Resolution Global Model to Estimate the Emissions From Open Burning,” Geoscientific Model Development Discussions, 3, 2439–2476. CrossRefGoogle Scholar
  32. Yaka, P., Sultan, B., Broutin, H., Janicot, S., Philippon, S., and Fourquet, N. (2008), “Relationships Between Climate and Year-to-Year Variability in Meningitis Outbreaks: A Case Study in Burkina Faso and Niger,” International Journal of Health Geographics, 7, 34. CrossRefGoogle Scholar
  33. Zibman, C. (2009), “Methods for Confounding Adjustment in Time Series Data: Applications to Short Term Effects of Air Pollution on Respiratory Health,” PhD Thesis, Department of Statistics, University of Chicago. Google Scholar

Copyright information

© International Biometric Society 2012

Authors and Affiliations

  • Vanja Dukić
    • 1
  • Mary Hayden
    • 2
  • Abudulai Adams Forgor
    • 3
  • Tom Hopson
    • 2
  • Patricia Akweongo
    • 4
  • Abraham Hodgson
    • 4
  • Andrew Monaghan
    • 2
  • Christine Wiedinmyer
    • 5
  • Tom Yoksas
    • 5
  • Madeleine C. Thomson
    • 6
  • Sylwia Trzaska
    • 6
  • Raj Pandya
    • 5
  1. 1.Department of Applied MathematicsUniversity of ColoradoBoulderUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.War Memorial HospitalNavrongoGhana
  4. 4.Navrongo Health Research CentreNavrongoGhana
  5. 5.University Corporation for Atmospheric ResearchBoulderUSA
  6. 6.The International Research InstituteColumbia UniversityNew York CityUSA

Personalised recommendations