Skip to main content
Log in

Agent-Based Inference for Animal Movement and Selection

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript


Contemporary ecologists often find themselves with an overwhelming amount of data to analyze. For example, it is now possible to collect nearly continuous spatiotemporal data on animal locations via global positioning systems and other satellite telemetry technology. In addition, there is a wealth of readily available environmental data via geographic information systems and remote sensing. We present a modeling framework that utilizes these forms of data and builds on previous research pertaining to the quantitative analysis of animal movement. This approach provides additional insight into the environmental drivers of residence and movement as well as resource selection while accommodating path uncertainty. The methods are demonstrated in an application involving mule deer movement in the La Sal Range, Utah, USA. Supplemental materials for this article are available online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Albert, J. H., and Chib, S. (1993), “Bayesian Analysis of Binary and Polychotomous Response Data,” Journal of the American Statistical Association, 88, 669–679.

    Article  MathSciNet  MATH  Google Scholar 

  • Barraquand, F., and Benhamou, S. (2008), “Animal Movements in Heterogeneous Landscapes: Identifying Profitable Places and Homogeneous Movement Bouts,” Ecology, 89, 3336–3348.

    Article  Google Scholar 

  • Christ, A., Ver Hoef, J., and Zimmerman, D. L. (2008), “An Animal Movement Model Incorporating Home Range and Habitat Selection,” Environmental and Ecological Statistics, 15, 27–38.

    Article  MathSciNet  Google Scholar 

  • Cressie, N. A. C., Calder, C. A., Clark, J. S., Ver Hoef, J. M., and Wikle, C. K. (2009), “Accounting for Uncertainty in Ecological Analysis: The Strengths and Limitations of Hierarchical Statistical Modeling,” Ecological Applications, 19, 553–570.

    Article  Google Scholar 

  • D’Eon, R. G., and Serrouya, R. (2005), “Mule Deer Seasonal Movements and Multiscale Resource Selection Using Global Positioning System Radiotelemetry,” Journal of Mammology, 86, 736–744.

    Article  Google Scholar 

  • Eckert, S. A., Moore, J. E., Dunn, D. C., Sagarminaga Van Buiten, R., Eckert, K. L., and Halpin, P. N. (2008), “Modeling Loggerhead Turtle Movement in the Mediterranean: Importance of Body Size and Oceanography,” Ecological Applications, 18, 290–308.

    Article  Google Scholar 

  • Flegal, J. M., Haran, M., and Jones, G. L. (2008), “Markov Chain Monte Carlo: Can We Trust the Third Significant Figure?” Statistical Science, 23, 250–260.

    Article  MathSciNet  MATH  Google Scholar 

  • Grimm, V., and Railsback, S. F. (2005), Individual-Based Modeling and Ecology, Princeton, New Jersey: Princeton University Press.

    Book  MATH  Google Scholar 

  • Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H.-H., Weiner, J., Wiegand, T., and DeAngelis, D. L. (2005), “Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology,” Science, 310, 987–991.

    Article  Google Scholar 

  • Holyoak, M., Casagrandi, R., Nathan, R., Revilla, E., and Spiegel, O. (2008), “Trends and Missing Parts in the Study of Movement Ecology,” Proceedings of the National Academy of Sciences, 105, 19060–19065.

    Article  Google Scholar 

  • Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow, A., VanDriel, J. N., and Wickham, J. (2007), “Completion of the 2001 National Land Cover Database for the Conterminous United States,” Photogrammetric Engineering and Remote Sensing, 73, 337–341.

    Google Scholar 

  • Hooten, M. B., and Wikle, C. K. (2010), “Statistical Agent-Based Models for Discrete Spatiotemporal Systems,” Journal of the American Statistical Association, 105, 236–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Horne, J. S., Garton, E. O., Krone, S. M., and Lewis, J. S. (2007), “Analyzing Animal Movements Using Brownian Bridges,” Ecology, 88, 2354–2363.

    Article  Google Scholar 

  • Johnson, D. S., London, J. M., Lea, M.-A., and Durban, J. W. (2008), “Continuous-Time Correlated Random Walk Model for Animal Telemetry Data,” Ecology, 89, 1208–1215.

    Article  Google Scholar 

  • Jones, G. L., Haran, M., Caffo, B. S., and Neath, R. (2006), “Fixed-Width Output Analysis for Markov Chain Monte Carlo,” Journal of the American Statistical Association, 101, 1537–1547.

    Article  MathSciNet  MATH  Google Scholar 

  • Jonsen, I. D., Myers, R. A., and Flemming, J. M. (2003), “Meta-Analysis of Animal Movement Using State-Space Models,” Ecology, 84, 3055–3063.

    Article  Google Scholar 

  • Jonsen, I. D., Flemming, J. M., and Myers, R. A. (2005), “Robust State-Space Modeling of Animal Movement Data,” Ecology, 86, 2874–2880.

    Article  Google Scholar 

  • MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and Langtimm, C. A. (2002), “Estimating Site Occupancy Rates when Detection Probabilities are Less than One,” Ecology, 83, 2248–2255.

    Article  Google Scholar 

  • MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., and Franklin, A. B. (2003), “Estimating Site Occupancy, Colonization, and Local Extinction when a Species is Detected Imperfectly,” Ecology, 84, 2200–2207.

    Article  Google Scholar 

  • McFarlane, L. R. (2007), “Breeding Behavior and Space Use of Male and Female Mule Deer: An Examination of Potential Risk Differences for Chronic Wasting Disease Infection,” M.S. Thesis, Utah State University, Dept. of Wildland Resources.

  • Miller, M. W., Hobbs, N. T., and Tavener, S. J. (2006), “Dynamics of Prion Disease Transmission in Mule Deer,” Ecological Applications, 16, 2208–2214.

    Article  Google Scholar 

  • Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E., and Fryxell, J. M. (2004), “Extracting More Out of Relocation Data: Building Movement Models as Mixtures of Random Walks,” Ecology, 85, 2436–2445.

    Article  Google Scholar 

  • O’Hara, R. B., and Sillanpaa, M. J. (2009), “A Review of Bayesian Variable Selection Methods: What, How and Which,” Bayesian Analysis, 4, 85–118.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsey, F. L., and Usner, D. (2003), “Persistence and Heterogeneity in Habitat Selection Studies Using Radio Telemetry,” Biometrics, 59, 332–340.

    Article  MathSciNet  MATH  Google Scholar 

  • Royle, J. A., and Dorazio, R. M. (2008), Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities, San Diego: Academic Press.

    Google Scholar 

  • Royle, J. A., and Kery, M. (2007), “A Bayesian State-Space Formulation of Dynamic Occupancy Models,” Ecology, 88, 1813–1823.

    Article  Google Scholar 

  • Tanner, M. A., and Wong, W. H. (1987), “The Calculation of Posterior Distributions by Data Augmentation,” Journal of the American Statistical Association, 82, 528–540.

    Article  MathSciNet  MATH  Google Scholar 

  • Tracey, J. A., Zhu, J., and Crooks, K. (2005), “A Set of Nonlinear Regression Models for Animal Movement in Response to a Single Landscape Feature,” Journal of Agricultural, Biological, and Environmental Statistics, 10, 1–18.

    Article  Google Scholar 

  • Tracey, J. A., Zhu, J., and Crooks, K. R. (2010, in press), “Modeling and Inference of Animal Movement Using Artificial Neural Networks,” Environmental and Ecological Statistics. doi:10.1007/s10651-010-0138-8.

  • Turchin, P. (1991), “Translating Foraging Movements in Heterogeneous Environments into the Spatial Distribution of Foragers,” Ecology, 72, 1253–1266.

    Article  Google Scholar 

  • — (1998), Quantitative Analysis of Movement, Sunderland, Massachusetts: Sinauer Associates, Inc. Publishers.

    MATH  Google Scholar 

  • Wikle, C. K. (2003), “Hierarchical Bayesian Models for Predicting the Spread of Ecological Processes,” Ecology, 84, 1382–1394.

    Article  Google Scholar 

  • Xie, Y., and Carlin, B. (2006), “Measures of Bayesian Learning and Identifiability in Hierarchical Models,” Journal of Statistical Planning and Inference, 136, 3458–3477.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mevin B. Hooten.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 39.4 KB)

(PDF 82.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooten, M.B., Johnson, D.S., Hanks, E.M. et al. Agent-Based Inference for Animal Movement and Selection. JABES 15, 523–538 (2010).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key Words