Skip to main content
Log in

Improving Estimates of Abundance by Aggregating Sparse Capture-Recapture Data

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

Inferences about abundance often are based on unadjusted counts of individuals observed, in part, because of the large amount of data required to generate reliable estimates of abundance. Where capture-recapture data are sparse, aggregating data across multiple sample elements by pooling species, locations, and sampling periods increases the information available for modeling detection probability, a necessary step for estimating abundance reliably. The process of aggregating sample elements involves balancing trade-offs related to the number of aggregated elements; although larger aggregates increase the amount of information available for estimation, they often require more complex models. We describe a heuristic approach for aggregating data for studies with multiple sample elements, use simulated data to evaluate the efficacy of aggregation, and illustrate the approach using data from a field study. Aggregating data systematically improved reliability of model selection and increased accuracy of abundance estimates while still providing estimates of abundance for each original sample unit, an important benefit necessary to maintain the design and sampling structure of a study. Within the framework of capture-recapture sampling, aggregating data improves estimates of abundance and increases the reliability of subsequent inferences made from sparse data. Additional tables and datasets may be found in the online supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alldredge, M. W., Pollock, K. H., Simons, T. R., and Shriner, S. A. (2007), “Multiple-Species Analysis of Point Count Data: A More Parsimonious Modelling Framework,” Journal of Applied Ecology, 44, 281–290.

    Article  Google Scholar 

  • Anderson, D. R., Burnham, K. P., and White, G. C. (1994), “AIC Model Selection in Overdispersed Capture-Recapture Data,” Ecology, 75, 1780–1793.

    Article  Google Scholar 

  • Bowden, D. C., White, G. C., Franklin, A. B., and Ganey, J. L. (2003), “Estimating Population Size With Correlated Sampling Unit Estimates,” Journal of Wildlife Management, 67, 1–10.

    Article  Google Scholar 

  • Boyce, M. S., MacKenzie, D. I., Manly, B. F. J., Haroldson, M. A., and Moody, D. (2001), “Negative Binomial Models for Abundance Estimation of Multiple Closed Populations,” Journal of Wildlife Management, 65, 498–509.

    Article  Google Scholar 

  • Buckland, S. T., Anderson, D. R., Burnham, K. P., and Laake, J. L. (1993), Distance Sampling: Estimating Abundance of Biological Populations, New York: Chapman & Hall.

    Google Scholar 

  • Burnham, K. P., and Anderson, D. R. (2002), Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.), New York: Springer.

    MATH  Google Scholar 

  • Clark, J. S. (2005), “Why Environmental Scientists Are Becoming Bayesians,” Ecology Letters, 8, 2–14.

    Article  Google Scholar 

  • J. S. Clark, and A. E. Gelfand (eds.) (2006), Hierarchical Modeling for the Environmental Sciences, Oxford: Oxford University Press.

    Google Scholar 

  • Clark, J. S., and LaDeau, S. (2006), “Synthesizing Ecological Experiments and Observational Data With Hierarchical Bayes,” in Hierarchical Modeling for the Environmental Sciences, eds. J. S. Clark, and A. E. Gelfand, Oxford: Oxford University Press, pp. 41–58.

    Google Scholar 

  • Congdon, P. (2003), Applied Bayesian Modelling, West Sussex: Wiley.

    Book  MATH  Google Scholar 

  • Conn, P. B., Arthur, A. D., Bailey, L. L., and Singleton, G. R. (2006), “Estimating the Abundance of Mouse Populations of Known Size: Promises and Pitfalls of New Methods,” Ecological Applications, 16, 829–837.

    Article  Google Scholar 

  • Hammond, E. L., and Anthony, R. G. (2006), “Mark-Recapture Estimates of Population Parameters for Selected Species of Small Mammals,” Journal of Mammalogy, 87, 618–627.

    Article  Google Scholar 

  • Hargrove, J. W., and Borland, C. H. (1994), “Pooled Population Parameter Estimates From Mark-Recapture Data,” Biometrics, 50, 1129–1141.

    Article  MATH  MathSciNet  Google Scholar 

  • Kéry, M., and Royle, J. A. (2008), “Hierarchical Bayes Estimation of Species Richness and Occupancy in Spatially Replicated Surveys,” Journal of Applied Ecology, 45, 589–598.

    Article  Google Scholar 

  • Litt, A. R. (2007), “Effects of Experimental Fire and Nonnative Grass Invasion on Small Mammals and Insects,” unpublished Ph.D. dissertation, University of Arizona, School of Natural Resources.

  • Lynam, A. J., Rabinowitz, A., Myint, T., Maung, M., Latt, K. T., and Po, A. H. T. (2009), “Estimating Abundance With Sparse Data: Tigers in Northern Myanmar,” Population Ecology, 51, 115–121.

    Article  Google Scholar 

  • MacKenzie, D. I., and Kendall, W. L. (2002), “How Should Detection Probability Be Incorporated Into Estimates of Relative Abundance?” Ecology, 83, 2327–2393.

    Google Scholar 

  • MacKenzie, D. I., Nichols, J. D., Sutton, N., Kawanishi, K., and Bailey, L. L. (2005), “Improving Inferences in Population Studies of Rare Species That Are Detected Imperfectly,” Ecology, 86, 1101–1113.

    Article  Google Scholar 

  • McCarthy, M. A. (2007), Bayesian Methods for Ecology, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • McKelvey, K. S., and Pearson, D. E. (2001), “Population Estimation With Sparse Data: The Role of Estimators versus Indices Revisited,” Canadian Journal of Zoology, 79, 1754–1765.

    Article  Google Scholar 

  • Nichols, J. D. (1986), “On the Use of Enumeration Estimators for Interspecific Comparisons, With Comments on a ‘Trappability’ Estimator,” Journal of Mammalogy, 67, 590–593.

    Article  Google Scholar 

  • — (1992), “Capture-Recapture Models: Using Marked Animals to Study Population Dynamics,” BioScience, 42, 94–102.

    Article  Google Scholar 

  • Otis, D. L., Burnham, K. P., White, G. C., and Anderson, D. R. (1978), “Statistical Inference From Capture Data on Closed Animal Populations,” Wildlife Monographs, 62, 1–135.

    Google Scholar 

  • Rosenberg, D. K., Overton, W. S., and Anthony, R. G. (1995), “Estimation of Animal Abundance When Capture Probabilities Are Low and Heterogeneous,” Journal of Wildlife Management, 59, 252–261.

    Article  Google Scholar 

  • Rosenberg, D. K., Swindle, K. A., and Anthony, R. G. (2003), “Influence of Prey Abundance on Northern Spotted Owl Reproductive Success in Western Oregon,” Canadian Journal of Zoology, 81, 1715–1725.

    Article  Google Scholar 

  • Schwarz, C. J., and Seber, G. A. F. (1999), “Estimating Animal Abundance: Review III,” Statistical Science, 14, 427–456.

    Article  Google Scholar 

  • Seber, G. A. F. (1982), Estimation of Animal Abundance and Related Parameters, New York: Macmillan.

    Google Scholar 

  • — (1986), “A Review of Estimating Animal Abundance,” Biometrics, 42, 267–292.

    Article  Google Scholar 

  • — (1992), “A Review of Estimating Animal Abundance II,” International Statistical Review, 60, 129–166.

    Article  MATH  Google Scholar 

  • Skalski, J. R., Robson, D. S., and Simmons, M. A. (1983), “Comparative Census Procedures Using Single Mark-Recapture Methods,” Ecology, 64, 752–760.

    Article  Google Scholar 

  • White, G. C. (2005), “Correcting Wildlife Counts Using Detection Probabilities,” Wildlife Research, 32, 211–216.

    Article  Google Scholar 

  • White, G. C., and Burnham, K. P. (1999), “Program MARK: Survival Estimation From Populations of Marked Animals,” Bird Study, 46 (Suppl.), 120–138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea R. Litt.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litt, A.R., Steidl, R.J. Improving Estimates of Abundance by Aggregating Sparse Capture-Recapture Data. JABES 15, 228–247 (2010). https://doi.org/10.1007/s13253-009-0017-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-009-0017-7

Key Words

Navigation