Skip to main content

Advertisement

Log in

A review of dosimetric impact of implementation of model-based dose calculation algorithms (MBDCAs) for HDR brachytherapy

  • Review Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

To obtain dose distributions more physically representative to the patient anatomy in brachytherapy, calculation algorithms that can account for heterogeneity are required. The current standard AAPM Task Group No 43 (TG-43) dose calculation formalism has some clinically relevant dosimetric limitations. Lack of tissue heterogeneity and scattered dose corrections are the major weaknesses of the TG-43 formalism and could lead to systematic dose errors in target volumes and organs at risk. Over the last decade, model-based dose calculation algorithms (MBDCAs) have been clinically offered as complementary algorithms beyond the TG43 formalism for high dose rate (HDR) brachytherapy treatment planning. These algorithms provide enhanced dose calculation accuracy by using the information in the patient’s computed tomography images, which allows modeling the patient’s geometry, material compositions, and the treatment applicator. Several researchers have investigated the implementation of MBDCAs in HDR brachytherapy for dose optimization, but moving toward using them as primary algorithms for dose calculations is still lagging. Therefore, an overview of up-to-date research is needed to familiarize clinicians with the current status of the MBDCAs for different cancers in HDR brachytherapy. In this paper, we review the MBDCAs for HDR brachytherapy from a dosimetric perspective. Treatment sites covered include breast, gynecological, lung, head and neck, esophagus, liver, prostate, and skin cancers. Moreover, we discuss the current status of implementation of MBDCAs and the challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS (1995) Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Med Phys 22(2):209–234

    Article  CAS  PubMed  Google Scholar 

  2. Rivard MJ, Butler WM, DeWerd LA, Huq MS, Ibbott GS, Meigooni AS et al (2007) Supplement to the 2004 update of the AAPM Task Group No. 43 Report. Med Phys 34(6):2187–2205

    Article  PubMed  Google Scholar 

  3. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS et al (2004) Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31(3):633–674

    Article  PubMed  Google Scholar 

  4. Perez-Calatayud J, Ballester F, Das RK, Dewerd LA, Ibbott GS, Meigooni AS et al (2012) Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: report of the AAPM and ESTRO. Med Phys 39(5):2904–2929

    Article  PubMed  Google Scholar 

  5. Ye SJ, Brezovich IA, Shen S, Duan J, Popple RA, Pareek PN (2004) Attenuation of intracavitary applicators in 192Ir-HDR brachytherapy. Med Phys 31(7):2097–2106

    Article  CAS  PubMed  Google Scholar 

  6. Osman AF, Maalej N, Ul-Rahman K, Rahman WA (2016) Heterogeneity and scatter effects on Ir-192 brachytherapy dose distribution. Phys Med 32(10):1210–1215

    Article  PubMed  Google Scholar 

  7. Chandola RM, Tiwari S, Kowar MK, Choudhary V (2010) Effect of inhomogeneities and source position on dose distribution of nucletron high dose rate Ir-192 brachytherapy source by Monte Carlo simulation. J Cancer Res Ther 6(1):54–57

    Article  CAS  PubMed  Google Scholar 

  8. Melhus CS, Rivard MJ (2006) Approaches to calculating AAPM TG-43 brachytherapy dosimetry parameters for 137Cs, 125I, 192Ir, 103Pd, and 169Yb sources. Med Phys 33(6):1729–1737

    Article  CAS  PubMed  Google Scholar 

  9. Taylor RE, Rogers DW (2008) EGSnrc Monte Carlo calculated dosimetry parameters for 192Ir and 169Yb brachytherapy sources. Med Phys 35(11):4933–4944

    Article  CAS  PubMed  Google Scholar 

  10. Beaulieu L, Carlsson Tedgren A, Carrier JF, Davis SD, Mourtada F, Rivard MJ et al (2012) Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation. Med Phys 39(10):6208–6236

    Article  PubMed  Google Scholar 

  11. Rivard MJ, Venselaar JL, Beaulieu L (2009) The evolution of brachytherapy treatment planning. Med Phys 36(6):2136–2153

    Article  PubMed  Google Scholar 

  12. Abe K, Kadoya N, Sato S, Hashimoto S, Nakajima Y, Miyasaka Y et al (2018) Impact of a commercially available model-based dose calculation algorithm on treatment planning of high-dose-rate brachytherapy in patients with cervical cancer. J Radiat Res 59(2):198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee CD (2014) Recent developments and best practice in brachytherapy treatment planning. Brit J Radiol 87(1041):20140146. https://doi.org/10.1259/bjr.20140146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sloboda RS, Morrison H, Cawston-Grant B, Menon GV (2017) A brief look at model-based dose calculation principles, practicalities, and promise. J Contemp Brachytherapy 9(1):79–88

    Article  PubMed  PubMed Central  Google Scholar 

  15. Enger SA, Vijande J, Rivard MJ (2020) Model-based dose calculation algorithms for brachytherapy dosimetry. Semin Radiat Oncol 30(1):77–86

    Article  PubMed  Google Scholar 

  16. Papagiannis P, Pantelis E, Karaiskos P (2014) Current state of the art brachytherapy treatment planning dosimetry algorithms. Br J Radiol 87(1041):20140163. https://doi.org/10.1259/bjr.20140163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hedtjärn H, Carlsson GA, Williamson JF (2002) Accelerated Monte Carlo based dose calculations for brachytherapy planning using correlated sampling. Phys Med Biol 47(3):351–376

    Article  PubMed  Google Scholar 

  18. White DR, Griffith RV, Wilson IJ (1992) ICRU report 46: photon, electron, proton and neutron interaction data for body tissues. J ICRU. https://doi.org/10.1093/jicru/os24.1.Report46

    Article  Google Scholar 

  19. Mann-Krzisnik D, Verhaegen F, Enger SA (2018) The influence of tissue composition uncertainty on dose distributions in brachytherapy. Radiother Oncol 126(3):394–410

    Article  PubMed  Google Scholar 

  20. Ballester F, Carlsson Tedgren Å, Granero D, Haworth A, Mourtada F, Fonseca GP et al (2015) A generic high-dose rate 192Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG‐43 formalism. Med Phys 42(6Part1):3048–3062

    Article  CAS  PubMed  Google Scholar 

  21. Volken W, Terribilini D, Fix MK, Lössl K, van Veelen B, Manser P (2013) OC-0081: collapsed cone dose calculation algorithm for HDR brachytherapy: validation and evaluation using Monte Carlo. Radiother Oncol 106:S32. https://doi.org/10.1016/S0167-8140(15)32387-2

    Article  Google Scholar 

  22. Terribilini D, Vitzthum V, Volken W, Frei D, Loessl K, van Veelen B et al (2017) Performance evaluation of a collapsed cone dose calculation algorithm for HDR Ir-192 of APBI treatments. Med Phys 44(10):5475–5485

    Article  CAS  PubMed  Google Scholar 

  23. Dagli A, Yurt F, Yegin G (2020) Evaluation of BrachyDose Monte Carlo code for HDR brachytherapy: dose comparison against Acuros® BV and TG-43 algorithms. J Radiother Pract 19(1):76–83

    Article  Google Scholar 

  24. Working group on model-based dose calculation algorithms in brachytherapy (WGDCAB). Available from: https://doi.org/http://www.aapm.org/org/structure/default.asp?committee_code=WGDCAB

  25. Beaulieu L, Ballester F, Carlson-Tedgren A, Fonseca G, Haworth A, Lowenstein J et al (2016) Implementation and validation of an end-to-end commissioning process for model-based dose calculation algorithms in brachytherapy. Brachytherapy 15:S172. https://doi.org/10.1016/j.brachy.2016.04.311

    Article  Google Scholar 

  26. Dempsey C (2010) Methodology for commissioning a brachytherapy treatment planning system in the era of 3D planning. Aust Phys Eng Sci Med 33(4):341–349

    Article  Google Scholar 

  27. Kubo HD, Glasgow GP, Pethel TD, Thomadsen BR, Williamson JF (1998) High dose-rate brachytherapy treatment delivery: report of the AAPM Radiation Therapy Committee Task Group No. 59. Med Phys 25(4):375–403

    Article  CAS  PubMed  Google Scholar 

  28. Nath R, Anderson LL, Meli JA, Olch AJ, Stitt JA, Williamson JF (1997) Code of practice for brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group No. 56. American Association of Physicists in Medicine. Med Phys 24(10):1557–1598

    Article  CAS  PubMed  Google Scholar 

  29. International Atomic Energy Agency (2004) Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer: Technical Reports Series No. 430. IAEA, Vienna

    Google Scholar 

  30. Venselaar J, Pérez-Calatayud J (2004) A practical guide to quality control of brachytherapy equipment, ESTRO booklet No. 8. ESTRO, Brussels

    Google Scholar 

  31. Ma Y, Lacroix F, Lavallée M-C, Beaulieu L (2015) Validation of the Oncentra Brachy Advanced Collapsed cone Engine for a commercial 192Ir source using heterogeneous geometries. Brachytherapy 14(6):939–952

    Article  PubMed  Google Scholar 

  32. Peppa V, Pantelis E, Pappas E, Lahanas V, Loukas C, Papagiannis P (2016) A user-oriented procedure for the commissioning and quality assurance testing of treatment planning system dosimetry in high-dose-rate brachytherapy. Brachytherapy 15(2):252–262

    Article  PubMed  Google Scholar 

  33. Pappas EP, Peppa V, Hourdakis CJ, Karaiskos P, Papagiannis P (2018) On the use of a novel Ferrous Xylenol-orange gelatin dosimeter for HDR brachytherapy commissioning and quality assurance testing. Phys Med 45:162–169

    Article  PubMed  Google Scholar 

  34. Tien CJ, Chen ZJ (2019) Deployment and performance of model-based dose calculation algorithm in 192Ir shielded cylinder brachytherapy. Brachytherapy 18(6):883–889

    Article  PubMed  Google Scholar 

  35. Crook J, Marbán M, Batchelar D (2020) HDR prostate brachytherapy. Semin Radiat Oncol 30(1):49–60

    Article  PubMed  Google Scholar 

  36. Plamondon M, Carlsson Tedgren A, Beaulieu L (2013) OC-0082: collapsed cone superposition algorithm for the dose calculation in brachytherapy using optimal kernel sizes. Radiother Oncol 106:S32. https://doi.org/10.1016/S0167-8140(15)32388-4

    Article  Google Scholar 

  37. Haussmann J, Corradini S, Nestle-Kraemling C, Bölke E, Njanang FJD, Tamaskovics B et al (2020) Recent advances in radiotherapy of breast cancer. Radiat Oncol 15(1):71. https://doi.org/10.1186/s13014-020-01501-x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tann AW, Hatch SS, Joyner MM, Wiederhold LR, Swanson TA (2016) Accelerated partial breast irradiation: past, present, and future. World J Clin Oncol 7(5):370–379

    Article  PubMed  PubMed Central  Google Scholar 

  39. Major T, Polgár C (2017) Treatment planning for multicatheter interstitial brachytherapy of breast cancer—from Paris system to anatomy-based inverse planning. J Contemp Brachyther 9(1):89–98

    Article  Google Scholar 

  40. Zourari K, Major T, Herein A, Peppa V, Polgár C, Papagiannis P (2015) A retrospective dosimetric comparison of TG43 and a commercially available MBDCA for an APBI brachytherapy patient cohort. Phys Med 31(7):669–676

    Article  CAS  PubMed  Google Scholar 

  41. Sinnatamby M, Nagarajan V, Reddy KS, Karunanidhi G, Singhavajala V (2015) Dosimetric comparison of Acuros™ BV with AAPM TG43 dose calculation formalism in breast interstitial high-dose-rate brachytherapy with the use of metal catheters. J Contemp Brachytherapy 7(4):273–279

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zourari K, Pantelis E, Moutsatsos A, Sakelliou L, Georgiou E, Karaiskos P et al (2013) Dosimetric accuracy of a deterministic radiation transport based (192)Ir brachytherapy treatment planning system. Part III. Comparison to Monte Carlo simulation in voxelized anatomical computational models. Med Phys 40(1):011712. https://doi.org/10.1118/1.4770275

    Article  CAS  PubMed  Google Scholar 

  43. Hofbauer J, Kirisits C, Resch A, Xu Y, Sturdza A, Pötter R et al (2016) Impact of heterogeneity-corrected dose calculation using a grid-based Boltzmann solver on breast and cervix cancer brachytherapy. J Contemp Brachytherapy 8(2):143–149

    Article  PubMed  PubMed Central  Google Scholar 

  44. Peppa V, Pappas EP, Karaiskos P, Major T, Polgár C, Papagiannis P (2016) Dosimetric and radiobiological comparison of TG-43 and Monte Carlo calculations in (192)Ir breast brachytherapy applications. Phys Med 32(10):1245–1251

    Article  CAS  PubMed  Google Scholar 

  45. Fonseca G, ThrowerK SL, Gifford K, Verhaegen F (2018) SP-0331: Science slam: Report back from ESTRO mobility grants physics: Modern dose calculation algorithms in brachytherapy. Radiother Oncol 127:S176–S176. https://doi.org/10.1016/S0167-8140(18)30641-8

    Article  Google Scholar 

  46. Sandwall PA, Feng Y, Platt M, Lamba M, Mahalingam S (2018) Evolution of brachytherapy treatment planning to deterministic radiation transport for calculation of cardiac dose. Med Dosim 43(2):150–158

    Article  PubMed  Google Scholar 

  47. Thrower SL, Shaitelman SF, Bloom E, Salehpour M, Gifford K (2016) Comparison of dose distributions with TG-43 and collapsed cone convolution algorithms applied to accelerated partial breast irradiation patient plans. Int J Radiat Oncol Biol Phys 95(5):1520–1526

    Article  PubMed  Google Scholar 

  48. Guix B, Finestres F, Tello J, Palma C, Martinez A, Guix J et al (2000) Treatment of skin carcinomas of the face by high-dose-rate brachytherapy and custom-made surface molds. Int J Radiat Oncol Biol Phys 47(1):95–102

    Article  CAS  PubMed  Google Scholar 

  49. Kang H, Patel R, Gros S (2019) SU-F-301-01: comparison of Acuros BV and TG-43 dose calculation for HDR skin brachytherapy with flap applicator in heterogeneous media. Med Phys 46(6):e113–e114. https://doi.org/10.1002/mp.13589

    Article  Google Scholar 

  50. Boman EL, Satherley TWS, Schleich N, Paterson DB, Greig L, Louwe RJW (2017) The validity of Acuros BV and TG-43 for high-dose-rate brachytherapy superficial mold treatments. Brachytherapy 16(6):1280–1288

    Article  PubMed  Google Scholar 

  51. Granero D, Perez-Calatayud J, Vijande J, Ballester F, Rivard MJ (2014) Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations. Med Phys 41(2):021703. https://doi.org/10.1118/1.4860175

    Article  CAS  PubMed  Google Scholar 

  52. Vijande J, Ballester F, Ouhib Z, Granero D, Pujades-Claumarchirant MC, Perez-Calatayud J (2012) Dosimetry comparison between TG-43 and Monte Carlo calculations using the Freiburg flap for skin high-dose-rate brachytherapy. Brachytherapy 11(6):528–535

    Article  PubMed  Google Scholar 

  53. Tien CJ, Pinkham DW, Chen ZJ (2020) Feasibility of using multiple-dwell positions in (192)Ir Leipzig-style brachytherapy surface applicators to expand target coverage and clinical application. Brachytherapy 19(4):532–543

    Article  PubMed  Google Scholar 

  54. Mazeron JJ, Ardiet JM, Haie-Méder C, Kovács G, Levendag P, Peiffert D et al (2009) GEC-ESTRO recommendations for brachytherapy for head and neck squamous cell carcinomas. Radiother Oncol 91(2):150–156

    Article  PubMed  Google Scholar 

  55. Nag S, Cano ER, Demanes DJ, Puthawala AA, Vikram B (2001) The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for head-and-neck carcinoma. Int J Radiat Oncol Biol Phys 50(5):1190–1198

    Article  CAS  PubMed  Google Scholar 

  56. Siebert FA, Wolf S, Kóvacs G (2013) Head and neck (192)Ir HDR-brachytherapy dosimetry using a grid-based Boltzmann solver. J Contemp Brachyther 5(4):232–235

    Article  Google Scholar 

  57. Hadad K, Zohrevand M, Faghihi R, Sedighi Pashaki A (2015) Accuracy evaluation of OncentraTM TPS in HDR brachytherapy of nasopharynx cancer using EGSnrc Monte Carlo Code. J Biomed Phys Eng 5(1):25–30

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Han DY, Ma Y, Luc B, Wahl M, Hsu I-CJ, Cunha A (2016) Assessment of volumetric dose differences between calculations performed with the advanced collapsed cone engine (ACE) for the model-based dose calculation method (TG-186), TG-43, and Monte Carlo. Brachytherapy 15:S146–S147. https://doi.org/10.1016/j.brachy.2016.04.257

    Article  Google Scholar 

  59. Peppa V, Pappas E, Major T, Takácsi-Nagy Z, Pantelis E, Papagiannis P (2016) On the impact of improved dosimetric accuracy on head and neck high dose rate brachytherapy. Radiother Oncol 120(1):92–97

    Article  PubMed  Google Scholar 

  60. Eason L, Mason J, Cooper R, Radhakrishna G, Bownes P (2020) Evaluation of a collapsed-cone convolution algorithm for esophagus and surface mold (192)Ir brachytherapy treatment planning. Brachytherapy. https://doi.org/10.1016/j.brachy.2020.09.006

    Article  PubMed  Google Scholar 

  61. O’Connell D, Chang A, Lee A, Venkat P, Hagio M, Yang Y et al (2020) TH-A-TRACK 3–07: investigating the impact of model-based dose calculation on interstitial lung brachytherapy and comparison to external beam SBRT. Med Phys 47(6):e367–e367. https://doi.org/10.1002/mp.14316

    Article  Google Scholar 

  62. Duque AS, Corradini S, Kamp F, Seidensticker M, Streitparth F, Kurz C et al (2020) The dosimetric impact of replacing the TG-43 algorithm by model based dose calculation for liver brachytherapy. Radiat Oncol 15(1):60. https://doi.org/10.1186/s13014-020-01492-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mikell JK, Klopp AH, Gonzalez GM, Kisling KD, Price MJ, Berner PA et al (2012) Impact of heterogeneity-based dose calculation using a deterministic grid-based Boltzmann equation solver for intracavitary brachytherapy. Int J Radiat Oncol Biol Phys 83(3):e417–e422. https://doi.org/10.1016/j.ijrobp.2011.12.074

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sinnatamby M, Nagarajan V, Reddy KS, Karunanidhi G, Singhavajala V (2016) Comparison of image-based three-dimensional treatment planning using AcurosTM BV and AAPM TG-43 algorithm for intracavitary brachytherapy of carcinoma cervix. J Radiother Pract 15(3):254–262

    Article  Google Scholar 

  65. Cawston-Grant B, Morrison H, Menon G, Sloboda RS (2017) Experimental verification of Advanced Collapsed-cone Engine for use with a multichannel vaginal cylinder applicator. J Appl Clin Med Phys 18(3):16–27

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jacob D, Lamberto M, DeSouza Lawrence L, Mourtada F (2017) Clinical transition to model-based dose calculation algorithm: a retrospective analysis of high-dose-rate tandem and ring brachytherapy of the cervix. Brachytherapy 16(3):624–629

    Article  PubMed  Google Scholar 

  67. Safigholi H, van Veelen B, Niatsetski Y, Song WY (2018) Modeling of the direction modulated brachytherapy tandem applicator using the Oncentra Brachy advanced collapsed cone engine. Brachytherapy 17(6):1030–1036

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A/Prof. Claire Dempsey, Calvary Mater Newcastle Hospital, and Prof. Annette Haworth, The University of Sydney, for their valuable comments and insightful suggestions on this manuscript.

Funding

The authors did not receive support from any organization for this submitted manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YY initiated the idea and carried out the database search; AO carried out the database search and drafted the manuscript; MH carried out the database search. All authors were involved in writing the manuscript and approved the submitted version.

Corresponding authors

Correspondence to Yousif A. M. Yousif or Alexander F. I. Osman.

Ethics declarations

Conflict of interest

The authors have no relevant conflicts of interest to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousif, Y.A.M., Osman, A.F.I. & Halato, M.A. A review of dosimetric impact of implementation of model-based dose calculation algorithms (MBDCAs) for HDR brachytherapy. Phys Eng Sci Med 44, 871–886 (2021). https://doi.org/10.1007/s13246-021-01029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-021-01029-8

Keywords

Navigation