Abstract
To obtain dose distributions more physically representative to the patient anatomy in brachytherapy, calculation algorithms that can account for heterogeneity are required. The current standard AAPM Task Group No 43 (TG-43) dose calculation formalism has some clinically relevant dosimetric limitations. Lack of tissue heterogeneity and scattered dose corrections are the major weaknesses of the TG-43 formalism and could lead to systematic dose errors in target volumes and organs at risk. Over the last decade, model-based dose calculation algorithms (MBDCAs) have been clinically offered as complementary algorithms beyond the TG43 formalism for high dose rate (HDR) brachytherapy treatment planning. These algorithms provide enhanced dose calculation accuracy by using the information in the patient’s computed tomography images, which allows modeling the patient’s geometry, material compositions, and the treatment applicator. Several researchers have investigated the implementation of MBDCAs in HDR brachytherapy for dose optimization, but moving toward using them as primary algorithms for dose calculations is still lagging. Therefore, an overview of up-to-date research is needed to familiarize clinicians with the current status of the MBDCAs for different cancers in HDR brachytherapy. In this paper, we review the MBDCAs for HDR brachytherapy from a dosimetric perspective. Treatment sites covered include breast, gynecological, lung, head and neck, esophagus, liver, prostate, and skin cancers. Moreover, we discuss the current status of implementation of MBDCAs and the challenges.
Similar content being viewed by others
References
Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS (1995) Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Med Phys 22(2):209–234
Rivard MJ, Butler WM, DeWerd LA, Huq MS, Ibbott GS, Meigooni AS et al (2007) Supplement to the 2004 update of the AAPM Task Group No. 43 Report. Med Phys 34(6):2187–2205
Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS et al (2004) Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31(3):633–674
Perez-Calatayud J, Ballester F, Das RK, Dewerd LA, Ibbott GS, Meigooni AS et al (2012) Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: report of the AAPM and ESTRO. Med Phys 39(5):2904–2929
Ye SJ, Brezovich IA, Shen S, Duan J, Popple RA, Pareek PN (2004) Attenuation of intracavitary applicators in 192Ir-HDR brachytherapy. Med Phys 31(7):2097–2106
Osman AF, Maalej N, Ul-Rahman K, Rahman WA (2016) Heterogeneity and scatter effects on Ir-192 brachytherapy dose distribution. Phys Med 32(10):1210–1215
Chandola RM, Tiwari S, Kowar MK, Choudhary V (2010) Effect of inhomogeneities and source position on dose distribution of nucletron high dose rate Ir-192 brachytherapy source by Monte Carlo simulation. J Cancer Res Ther 6(1):54–57
Melhus CS, Rivard MJ (2006) Approaches to calculating AAPM TG-43 brachytherapy dosimetry parameters for 137Cs, 125I, 192Ir, 103Pd, and 169Yb sources. Med Phys 33(6):1729–1737
Taylor RE, Rogers DW (2008) EGSnrc Monte Carlo calculated dosimetry parameters for 192Ir and 169Yb brachytherapy sources. Med Phys 35(11):4933–4944
Beaulieu L, Carlsson Tedgren A, Carrier JF, Davis SD, Mourtada F, Rivard MJ et al (2012) Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation. Med Phys 39(10):6208–6236
Rivard MJ, Venselaar JL, Beaulieu L (2009) The evolution of brachytherapy treatment planning. Med Phys 36(6):2136–2153
Abe K, Kadoya N, Sato S, Hashimoto S, Nakajima Y, Miyasaka Y et al (2018) Impact of a commercially available model-based dose calculation algorithm on treatment planning of high-dose-rate brachytherapy in patients with cervical cancer. J Radiat Res 59(2):198–206
Lee CD (2014) Recent developments and best practice in brachytherapy treatment planning. Brit J Radiol 87(1041):20140146. https://doi.org/10.1259/bjr.20140146
Sloboda RS, Morrison H, Cawston-Grant B, Menon GV (2017) A brief look at model-based dose calculation principles, practicalities, and promise. J Contemp Brachytherapy 9(1):79–88
Enger SA, Vijande J, Rivard MJ (2020) Model-based dose calculation algorithms for brachytherapy dosimetry. Semin Radiat Oncol 30(1):77–86
Papagiannis P, Pantelis E, Karaiskos P (2014) Current state of the art brachytherapy treatment planning dosimetry algorithms. Br J Radiol 87(1041):20140163. https://doi.org/10.1259/bjr.20140163
Hedtjärn H, Carlsson GA, Williamson JF (2002) Accelerated Monte Carlo based dose calculations for brachytherapy planning using correlated sampling. Phys Med Biol 47(3):351–376
White DR, Griffith RV, Wilson IJ (1992) ICRU report 46: photon, electron, proton and neutron interaction data for body tissues. J ICRU. https://doi.org/10.1093/jicru/os24.1.Report46
Mann-Krzisnik D, Verhaegen F, Enger SA (2018) The influence of tissue composition uncertainty on dose distributions in brachytherapy. Radiother Oncol 126(3):394–410
Ballester F, Carlsson Tedgren Å, Granero D, Haworth A, Mourtada F, Fonseca GP et al (2015) A generic high-dose rate 192Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG‐43 formalism. Med Phys 42(6Part1):3048–3062
Volken W, Terribilini D, Fix MK, Lössl K, van Veelen B, Manser P (2013) OC-0081: collapsed cone dose calculation algorithm for HDR brachytherapy: validation and evaluation using Monte Carlo. Radiother Oncol 106:S32. https://doi.org/10.1016/S0167-8140(15)32387-2
Terribilini D, Vitzthum V, Volken W, Frei D, Loessl K, van Veelen B et al (2017) Performance evaluation of a collapsed cone dose calculation algorithm for HDR Ir-192 of APBI treatments. Med Phys 44(10):5475–5485
Dagli A, Yurt F, Yegin G (2020) Evaluation of BrachyDose Monte Carlo code for HDR brachytherapy: dose comparison against Acuros® BV and TG-43 algorithms. J Radiother Pract 19(1):76–83
Working group on model-based dose calculation algorithms in brachytherapy (WGDCAB). Available from: https://doi.org/http://www.aapm.org/org/structure/default.asp?committee_code=WGDCAB
Beaulieu L, Ballester F, Carlson-Tedgren A, Fonseca G, Haworth A, Lowenstein J et al (2016) Implementation and validation of an end-to-end commissioning process for model-based dose calculation algorithms in brachytherapy. Brachytherapy 15:S172. https://doi.org/10.1016/j.brachy.2016.04.311
Dempsey C (2010) Methodology for commissioning a brachytherapy treatment planning system in the era of 3D planning. Aust Phys Eng Sci Med 33(4):341–349
Kubo HD, Glasgow GP, Pethel TD, Thomadsen BR, Williamson JF (1998) High dose-rate brachytherapy treatment delivery: report of the AAPM Radiation Therapy Committee Task Group No. 59. Med Phys 25(4):375–403
Nath R, Anderson LL, Meli JA, Olch AJ, Stitt JA, Williamson JF (1997) Code of practice for brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group No. 56. American Association of Physicists in Medicine. Med Phys 24(10):1557–1598
International Atomic Energy Agency (2004) Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer: Technical Reports Series No. 430. IAEA, Vienna
Venselaar J, Pérez-Calatayud J (2004) A practical guide to quality control of brachytherapy equipment, ESTRO booklet No. 8. ESTRO, Brussels
Ma Y, Lacroix F, Lavallée M-C, Beaulieu L (2015) Validation of the Oncentra Brachy Advanced Collapsed cone Engine for a commercial 192Ir source using heterogeneous geometries. Brachytherapy 14(6):939–952
Peppa V, Pantelis E, Pappas E, Lahanas V, Loukas C, Papagiannis P (2016) A user-oriented procedure for the commissioning and quality assurance testing of treatment planning system dosimetry in high-dose-rate brachytherapy. Brachytherapy 15(2):252–262
Pappas EP, Peppa V, Hourdakis CJ, Karaiskos P, Papagiannis P (2018) On the use of a novel Ferrous Xylenol-orange gelatin dosimeter for HDR brachytherapy commissioning and quality assurance testing. Phys Med 45:162–169
Tien CJ, Chen ZJ (2019) Deployment and performance of model-based dose calculation algorithm in 192Ir shielded cylinder brachytherapy. Brachytherapy 18(6):883–889
Crook J, Marbán M, Batchelar D (2020) HDR prostate brachytherapy. Semin Radiat Oncol 30(1):49–60
Plamondon M, Carlsson Tedgren A, Beaulieu L (2013) OC-0082: collapsed cone superposition algorithm for the dose calculation in brachytherapy using optimal kernel sizes. Radiother Oncol 106:S32. https://doi.org/10.1016/S0167-8140(15)32388-4
Haussmann J, Corradini S, Nestle-Kraemling C, Bölke E, Njanang FJD, Tamaskovics B et al (2020) Recent advances in radiotherapy of breast cancer. Radiat Oncol 15(1):71. https://doi.org/10.1186/s13014-020-01501-x
Tann AW, Hatch SS, Joyner MM, Wiederhold LR, Swanson TA (2016) Accelerated partial breast irradiation: past, present, and future. World J Clin Oncol 7(5):370–379
Major T, Polgár C (2017) Treatment planning for multicatheter interstitial brachytherapy of breast cancer—from Paris system to anatomy-based inverse planning. J Contemp Brachyther 9(1):89–98
Zourari K, Major T, Herein A, Peppa V, Polgár C, Papagiannis P (2015) A retrospective dosimetric comparison of TG43 and a commercially available MBDCA for an APBI brachytherapy patient cohort. Phys Med 31(7):669–676
Sinnatamby M, Nagarajan V, Reddy KS, Karunanidhi G, Singhavajala V (2015) Dosimetric comparison of Acuros™ BV with AAPM TG43 dose calculation formalism in breast interstitial high-dose-rate brachytherapy with the use of metal catheters. J Contemp Brachytherapy 7(4):273–279
Zourari K, Pantelis E, Moutsatsos A, Sakelliou L, Georgiou E, Karaiskos P et al (2013) Dosimetric accuracy of a deterministic radiation transport based (192)Ir brachytherapy treatment planning system. Part III. Comparison to Monte Carlo simulation in voxelized anatomical computational models. Med Phys 40(1):011712. https://doi.org/10.1118/1.4770275
Hofbauer J, Kirisits C, Resch A, Xu Y, Sturdza A, Pötter R et al (2016) Impact of heterogeneity-corrected dose calculation using a grid-based Boltzmann solver on breast and cervix cancer brachytherapy. J Contemp Brachytherapy 8(2):143–149
Peppa V, Pappas EP, Karaiskos P, Major T, Polgár C, Papagiannis P (2016) Dosimetric and radiobiological comparison of TG-43 and Monte Carlo calculations in (192)Ir breast brachytherapy applications. Phys Med 32(10):1245–1251
Fonseca G, ThrowerK SL, Gifford K, Verhaegen F (2018) SP-0331: Science slam: Report back from ESTRO mobility grants physics: Modern dose calculation algorithms in brachytherapy. Radiother Oncol 127:S176–S176. https://doi.org/10.1016/S0167-8140(18)30641-8
Sandwall PA, Feng Y, Platt M, Lamba M, Mahalingam S (2018) Evolution of brachytherapy treatment planning to deterministic radiation transport for calculation of cardiac dose. Med Dosim 43(2):150–158
Thrower SL, Shaitelman SF, Bloom E, Salehpour M, Gifford K (2016) Comparison of dose distributions with TG-43 and collapsed cone convolution algorithms applied to accelerated partial breast irradiation patient plans. Int J Radiat Oncol Biol Phys 95(5):1520–1526
Guix B, Finestres F, Tello J, Palma C, Martinez A, Guix J et al (2000) Treatment of skin carcinomas of the face by high-dose-rate brachytherapy and custom-made surface molds. Int J Radiat Oncol Biol Phys 47(1):95–102
Kang H, Patel R, Gros S (2019) SU-F-301-01: comparison of Acuros BV and TG-43 dose calculation for HDR skin brachytherapy with flap applicator in heterogeneous media. Med Phys 46(6):e113–e114. https://doi.org/10.1002/mp.13589
Boman EL, Satherley TWS, Schleich N, Paterson DB, Greig L, Louwe RJW (2017) The validity of Acuros BV and TG-43 for high-dose-rate brachytherapy superficial mold treatments. Brachytherapy 16(6):1280–1288
Granero D, Perez-Calatayud J, Vijande J, Ballester F, Rivard MJ (2014) Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations. Med Phys 41(2):021703. https://doi.org/10.1118/1.4860175
Vijande J, Ballester F, Ouhib Z, Granero D, Pujades-Claumarchirant MC, Perez-Calatayud J (2012) Dosimetry comparison between TG-43 and Monte Carlo calculations using the Freiburg flap for skin high-dose-rate brachytherapy. Brachytherapy 11(6):528–535
Tien CJ, Pinkham DW, Chen ZJ (2020) Feasibility of using multiple-dwell positions in (192)Ir Leipzig-style brachytherapy surface applicators to expand target coverage and clinical application. Brachytherapy 19(4):532–543
Mazeron JJ, Ardiet JM, Haie-Méder C, Kovács G, Levendag P, Peiffert D et al (2009) GEC-ESTRO recommendations for brachytherapy for head and neck squamous cell carcinomas. Radiother Oncol 91(2):150–156
Nag S, Cano ER, Demanes DJ, Puthawala AA, Vikram B (2001) The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for head-and-neck carcinoma. Int J Radiat Oncol Biol Phys 50(5):1190–1198
Siebert FA, Wolf S, Kóvacs G (2013) Head and neck (192)Ir HDR-brachytherapy dosimetry using a grid-based Boltzmann solver. J Contemp Brachyther 5(4):232–235
Hadad K, Zohrevand M, Faghihi R, Sedighi Pashaki A (2015) Accuracy evaluation of OncentraTM TPS in HDR brachytherapy of nasopharynx cancer using EGSnrc Monte Carlo Code. J Biomed Phys Eng 5(1):25–30
Han DY, Ma Y, Luc B, Wahl M, Hsu I-CJ, Cunha A (2016) Assessment of volumetric dose differences between calculations performed with the advanced collapsed cone engine (ACE) for the model-based dose calculation method (TG-186), TG-43, and Monte Carlo. Brachytherapy 15:S146–S147. https://doi.org/10.1016/j.brachy.2016.04.257
Peppa V, Pappas E, Major T, Takácsi-Nagy Z, Pantelis E, Papagiannis P (2016) On the impact of improved dosimetric accuracy on head and neck high dose rate brachytherapy. Radiother Oncol 120(1):92–97
Eason L, Mason J, Cooper R, Radhakrishna G, Bownes P (2020) Evaluation of a collapsed-cone convolution algorithm for esophagus and surface mold (192)Ir brachytherapy treatment planning. Brachytherapy. https://doi.org/10.1016/j.brachy.2020.09.006
O’Connell D, Chang A, Lee A, Venkat P, Hagio M, Yang Y et al (2020) TH-A-TRACK 3–07: investigating the impact of model-based dose calculation on interstitial lung brachytherapy and comparison to external beam SBRT. Med Phys 47(6):e367–e367. https://doi.org/10.1002/mp.14316
Duque AS, Corradini S, Kamp F, Seidensticker M, Streitparth F, Kurz C et al (2020) The dosimetric impact of replacing the TG-43 algorithm by model based dose calculation for liver brachytherapy. Radiat Oncol 15(1):60. https://doi.org/10.1186/s13014-020-01492-9
Mikell JK, Klopp AH, Gonzalez GM, Kisling KD, Price MJ, Berner PA et al (2012) Impact of heterogeneity-based dose calculation using a deterministic grid-based Boltzmann equation solver for intracavitary brachytherapy. Int J Radiat Oncol Biol Phys 83(3):e417–e422. https://doi.org/10.1016/j.ijrobp.2011.12.074
Sinnatamby M, Nagarajan V, Reddy KS, Karunanidhi G, Singhavajala V (2016) Comparison of image-based three-dimensional treatment planning using AcurosTM BV and AAPM TG-43 algorithm for intracavitary brachytherapy of carcinoma cervix. J Radiother Pract 15(3):254–262
Cawston-Grant B, Morrison H, Menon G, Sloboda RS (2017) Experimental verification of Advanced Collapsed-cone Engine for use with a multichannel vaginal cylinder applicator. J Appl Clin Med Phys 18(3):16–27
Jacob D, Lamberto M, DeSouza Lawrence L, Mourtada F (2017) Clinical transition to model-based dose calculation algorithm: a retrospective analysis of high-dose-rate tandem and ring brachytherapy of the cervix. Brachytherapy 16(3):624–629
Safigholi H, van Veelen B, Niatsetski Y, Song WY (2018) Modeling of the direction modulated brachytherapy tandem applicator using the Oncentra Brachy advanced collapsed cone engine. Brachytherapy 17(6):1030–1036
Acknowledgements
The authors would like to thank A/Prof. Claire Dempsey, Calvary Mater Newcastle Hospital, and Prof. Annette Haworth, The University of Sydney, for their valuable comments and insightful suggestions on this manuscript.
Funding
The authors did not receive support from any organization for this submitted manuscript.
Author information
Authors and Affiliations
Contributions
YY initiated the idea and carried out the database search; AO carried out the database search and drafted the manuscript; MH carried out the database search. All authors were involved in writing the manuscript and approved the submitted version.
Corresponding authors
Ethics declarations
Conflict of interest
The authors have no relevant conflicts of interest to disclose.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yousif, Y.A.M., Osman, A.F.I. & Halato, M.A. A review of dosimetric impact of implementation of model-based dose calculation algorithms (MBDCAs) for HDR brachytherapy. Phys Eng Sci Med 44, 871–886 (2021). https://doi.org/10.1007/s13246-021-01029-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13246-021-01029-8