Skip to main content

Advertisement

Log in

Dosimetric evaluation of a patient-specific 3D-printed oral positioning stent for head-and-neck radiotherapy

  • Scientific Note
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

As head-and-neck radiotherapy treatments become more complex and sophisticated, and the need to control and stabilise the positioning of intra-oral anatomy becomes more important, leading the increasing use of oral positioning stents during head-and-neck radiotherapy simulation and delivery. As an alternative to the established practice of creating oral positioning stents using wax, this study investigated the use of a 3D printing technique. An Ender 5 3D printer (Creality 3D, Shenzhen, China) was used, with PLA+ “food-safe” polylactic acid filament (3D Fillies, Dandenong South, Australia), to produce a low-density 3D printed duplicate of a conventional wax stent. The physical and dosimetric effects of the two stents were evaluated using radiochromic film in a solid head phantom that was modified to include flexible parts. The Varian Eclipse treatment planning system (Varian Medical Systems, Palo Alto, USA) was used to calculate the dose from two different head-and-neck treatment plans for the phantom with each of the two stents. Examination of the resulting four dose distributions showed that both stents effectively pushed sensitive oral tissues away from the treatment targets, even though most of the phantom was solid. Film measurements confirmed the accuracy of the dose calculations from the treatment planning system, despite the steep density gradients in the treated volume, and demonstrated that the 3D print could be a suitable replacement for the wax stent. This study demonstrated a useful method for dosimetrically testing novel oral positioning stents. We recommend the development of flexible phantoms for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Parliament MB, Scrimger RA, Anderson SG, Kurien EC, Thompson HK, Field GC, Hanson J (2004) Preservation of oral health-related quality of life and salivary flow rates after inverse-planned intensity-modulated radiotherapy (IMRT) for head-and-neck cancer. Int J Radiat Oncol Biol Phys 58(3):663–673

    Article  Google Scholar 

  2. Navran A, Heemsbergen W, Janssen T, Hamming-Vrieze O, Jonker M, Zuur C, Verheij M, Remeijer P, Sonke JJ, van den Brekel M, Al-Mamgani A (2019) The impact of margin reduction on outcome and toxicity in head and neck cancer patients treated with image-guided volumetric modulated arc therapy (VMAT). Radiother Oncol 130:25–31

    Article  Google Scholar 

  3. Johnston M, Clifford S, Bromley R, Back M, Oliver L, Eade T (2011) Volumetric-modulated arc therapy in head and neck radiotherapy: a planning comparison using simultaneous integrated boost for nasopharynx and oropharynx carcinoma. Clin Oncol 23(8):503–511

    Article  CAS  Google Scholar 

  4. Holt A, Van Gestel D, Arends MP, Korevaar EW, Schuring D, Kunze-Busch MC, Louwe RJ, van Vliet-Vroegindeweij C (2013) Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer: a planning study. Radiat Oncol 8:26

    Article  Google Scholar 

  5. Stieler F, Wolff D, Schmid H, Welzel G, Wenz F, Lohr F (2011) A comparison of several modulated radiotherapy techniques for head and neck cancer and dosimetric validation of VMAT. Radiother Oncol 101(3):388–393

    Article  Google Scholar 

  6. Osborn J (2017) Is VMAT beneficial for patients undergoing radiotherapy to the head and neck? Radiography 23(1):73–76

    Article  CAS  Google Scholar 

  7. Lin CG, Xu SK, Yao WY, Wu YQ, Fang JL, Wu VW (2017) Comparison of set up accuracy among three common immobilisation systems for intensity modulated radiotherapy of nasopharyngeal carcinoma patients. J Med Radiat Sci 64(2):106–113

    Article  Google Scholar 

  8. Hansen CR, Christiansen RL, Nielsen TB, Bertelsen AS, Johansen J, Brink C (2014) Comparison of three immobilisation systems for radiation therapy in head and neck cancer. Acta Oncol 53(3):423–427

    Article  Google Scholar 

  9. Leech M, Coffey M, Mast M, Moura F, Osztavics A, Pasini D, Vaandering A (2017) ESTRO ACROP guidelines for positioning, immobilisation and position verification of head and neck patients for radiation therapists. Tech Innov Patient Support Radiat Oncol 1:1–7

    Article  Google Scholar 

  10. Gilbeau L, Octave-Prignot M, Loncol T, Renard L, Scalliet P, Grégoire V (2001) Comparison of setup accuracy of three different thermoplastic masks for the treatment of brain and head and neck tumors. Radiother Oncol 58(2):155–162

    Article  CAS  Google Scholar 

  11. Sharp L, Lewin F, Johansson H, Payne D, Gerhardsson A, Rutqvist LE (2005) Randomized trial on two types of thermoplastic masks for patient immobilization during radiation therapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 61(1):250–256

    Article  Google Scholar 

  12. Grant SR, Williamson TD, Stieb S, Shah SJ, Fuller CD, Rosenthal DI, Frank SJ, Garden AS, Morrison WH, Phan J, Moreno AC (2020) A dosimetric comparison of oral cavity sparing in the unilateral treatment of early stage tonsil cancer: IMRT, IMPT, and tongue deviating oral stents. Adv Radiat Oncol 5(6):1359–1363

    Article  Google Scholar 

  13. Stieb S, Perez Martinez I, Mohamed AS, Rock S, Bajaj N, Deshpande TS, Zaid M, Garden AS, Goepfert RP, Cardoso R, Ferrarotto R (2020) The impact of tongue deviating and tongue depressing oral stents on long term radiation associated symptoms in oropharyngeal cancer survivors. Clin Transl Radiat Oncol 24:71–78

    Article  Google Scholar 

  14. Hong CS, Oh D, Ju SG, Ahn YC, Na CH, Kwon DY, Kim CC (2019) Development of a semi customized tongue displacement device using a 3D printer for head and neck IMRT. Radiat Oncol 14:79

    Article  Google Scholar 

  15. Wilke CT, Zaid M, Chung C, Fuller CD, Mohamed AS, Skinner H, Phan J, Gunn GB, Morrison WH, Garden AS, Frank SJ (2017) Design and fabrication of a 3D printed oral stent for head and neck radiotherapy from routine diagnostic imaging. 3D Print Med 3:12

    Article  Google Scholar 

  16. Doi H, Tanooka M, Ishida T, Moridera K, Ichimiya K, Tarutani K, Kitajima K, Fujiwara M, Kishimoto H, Kamikonya N (2017) Utility of intraoral stents in external beam radiotherapy for head and neck cancer. Rep Pract Oncol Radiother 22(4):310–318

    Article  Google Scholar 

  17. Johnson B, Sales L, Winston A, Liao J, Laramore G, Parvathaneni U (2013) Fabrication of customized tongue displacing stents: considerations for use in patients receiving head and neck radiotherapy. J Am Dent Assoc 144(6):594–600

    Article  Google Scholar 

  18. Liang R, Lehnhardt J, Chang C, Roberts G, Gaudilliere D, Hara W, Le QT, Beadle BM (2018) Use of 3D printed custom oral stents to improve positioning and reproducibility for patients treated for head and neck cancer. Int J Radiat Oncol Biol Phys 102(3):e329–e330

    Article  Google Scholar 

  19. Norfadilah MN, Ahmad R, Heng SP, Lam KS, Radzi AB, John LSH (2017) Immobilisation precision in VMAT for oral cancer patients. J Phys Conf Ser 851:012025

    Article  Google Scholar 

  20. Lee VSK, Nguyen CT, Wu J (2019) The fabrication of an acrylic repositioning stent for use during intensity modulated radiation therapy: a feasibility study. J Prosthodont 28(6):643–648

    Article  CAS  Google Scholar 

  21. Verrone JR, Alves FDA, Prado JD, Boccaletti KW, Sereno MP, Silva MLG, Jaguar GC (2013) Impact of intraoral stent on the side effects of radiotherapy for oral cancer. Head Neck 35(7):E213–E217

    Article  Google Scholar 

  22. Crowe SB, Kairn T, Trapp JV, Fielding AL (2013) Monte Carlo evaluation of collapsed-cone convolution calculations in head and neck radiotherapy treatment plans. IFMBE Proc 39:1803–1806. https://doi.org/10.1007/978-3-642-29305-4_474

    Article  Google Scholar 

  23. Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341

    Article  Google Scholar 

  24. Kairn T, Zahrani M, Cassim N, Livingstone AG, Charles PH, Crowe SB (2020) Quasi simultaneous 3D printing of muscle-, lung- and bone-equivalent media: a proof of concept study. Phys Eng Sci Med 43(2):701–710

    Article  CAS  Google Scholar 

  25. Standards Australia (1999) Plastic materials for food contact use. As 2070–1999

  26. Tino R, Leary M, Yeo A, Brandt M, Kron T (2019) Gyroid structures for 3D-printed heterogeneous radiotherapy phantoms. Phys Med Biol 64(21):21NT05

    Article  CAS  Google Scholar 

  27. Charles PH, Kairn T, Crowe SB (2020) Clinical quality assurance of 3D printed patient specific radiotherapy devices. Phys Eng Sci Med 43(1):436–437. https://doi.org/10.1007/s13246-019-00826-6. Correction to: EPSM 2019, Engineering and Physical Sciences in Medicine. Phys Eng Sci Med 43(1):463 (2020). https://doi.org/10.1007/s13246-020-00846-7

  28. Sasaki DK, McGeachy P, Aviles JEA et al (2019) A modern mold room: meshing 3D surface scanning, digital design, and 3D printing with bolus fabrication. J Appl Clin Med Phys 20(9):78–85

    Article  Google Scholar 

  29. Cignoni P, Callieri M, Corsini M et al (2008) MeshLab: an Open-Source Mesh Processing Tool. In: Sixth Eurographics Italian Chapter Conference, pp 129–136

  30. Cignoni P, Rocchini C, Scopigno R (1998) Metro: measuring error on simplified surfaces. Comput Graph Forum 17(2):167–174

    Article  Google Scholar 

  31. Alderson SW, Lanzl LH, Rollins M, Spira J (1962) An instrumented phantom system for analog computation of treatment plans. Am J Roentgenol Radium Ther Nucl Med 87:185–195

    CAS  PubMed  Google Scholar 

  32. Binny D, Kairn T, Lancaster CM, Trapp JV, Crowe SB (2018) Photon optimizer (PO) versus progressive resolution optimizer (PRO): a conformality and complexity based comparison for intensity modulated arc therapy plans. Med Dosim 43(3):267–275

    Article  Google Scholar 

  33. Kairn T, Lathouras M, Grogan M, Green B, Sylvander SR, Crowe SB (2021) Effects of gas filled temporary breast tissue expanders on radiation dose from modulated rotational photon beams. Med Dosim (in press). https://doi.org/10.1016/j.meddos.2020.06.003

    Article  Google Scholar 

  34. Rijken J, Kairn T, Crowe S, Muñoz L, Trapp J (2018) A simple method to account for skin dose enhancement during treatment planning of VMAT treatments of patients in contact with immobilisation equipment. J Appl Clin Med Phys 19(4):239–245

    Article  Google Scholar 

  35. Morales JE, Hill R, Crowe SB, Kairn T, Trapp JV (2014) A comparison of surface doses for very small field size x-ray beams: Monte Carlo calculations and radiochromic film measurements. Australas Phys Eng Sci Med 37(2):303–309

    Article  CAS  Google Scholar 

  36. Moylan R, Aland T, Kairn T (2013) Dosimetric accuracy of Gafchromic EBT2 and EBT3 film for in vivo dosimetry. Australas Phys Eng Sci Med 36(3):331–337

    Article  Google Scholar 

  37. Kairn T, Aland T, Kenny J (2010) Local heterogeneities in early batches of EBT2 film: a suggested solution. Phys Med Biol 55(15):L37–L42

    Article  CAS  Google Scholar 

  38. Aland T, Kairn T, Kenny J (2011) Evaluation of a Gafchromic EBT2 film dosimetry system for radiotherapy quality assurance. Australas Phys Eng Sci Med 34(2):251–260

    Article  CAS  Google Scholar 

  39. Kairn T, Hardcastle N, Kenny J, Meldrum R, Tome W, Aland T (2011) EBT2 radiochromic film for quality assurance of complex IMRT treatments of the prostate: Micro collimated IMRT, RapidArc, and TomoTherapy. Australas Phys Eng Sci Med 34(3):333–343

    Article  CAS  Google Scholar 

  40. Spelleken E, Crowe SB, Sutherland B, Challens C, Kairn T (2018) Accuracy and efficiency of published film dosimetry techniques using a flat bed scanner and EBT3 film. Australas Phys Eng Sci Med 41(1):117–128

    Article  CAS  Google Scholar 

  41. Crowe SB, Charles PH, Cassim N, Maxwell SK, Sylvander SR, Smith JG, Kairn T (2021) Predicting the required thickness of custom shielding materials in kilovoltage radiotherapy beams. Physica Med 81:94–101

    Article  Google Scholar 

Download references

Funding

Contributions to this work from Susannah Cleland, Scott B. Crowe, Elise Obereigner and Tania Poroa were supported by a Metro North Hospital and Health Service funded Herston Biofabrication Institute Programme Grant (no grant number).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Kairn.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cleland, S., Chan, P., Chua, B. et al. Dosimetric evaluation of a patient-specific 3D-printed oral positioning stent for head-and-neck radiotherapy. Phys Eng Sci Med 44, 887–899 (2021). https://doi.org/10.1007/s13246-021-01025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-021-01025-y

Keywords

Navigation