A review of stereotactic body radiotherapy for the spine

Abstract

Radiation therapy of the spine, as recourse for spinal tumours, is an effective method of achieving pain reduction and local control. Hypofractionated techniques like stereotactic body radiation therapy and especially stereotactic radiosurgery are quickly becoming more popular as studies are published demonstrating their superior outcomes. This review concerns aspects of spinal radiotherapy of interest to the clinical medical physicist, with a focus on stereotactic techniques. The literature surveyed is mostly from the last two decades, concentrating particularly on studies from the last few years. Clinical aspects of spinal disease are covered to give context to the development of different radiotherapy techniques and thus the changing suitability criteria of patients. The latest studies concerning the treatment pathway are reviewed and summarised—from simulation and prescription to contouring, treatment planning and treatment delivery. This then leads into a discussion of the accuracy and uncertainties surrounding different methods of immobilisation and image guidance. Treatment planning algorithms and approaches are also reviewed. Finally, we survey the most recent outcomes and statistics concerning failures, toxicity, survivability and control rates. With careful consideration of the latest literature, patients suffering from spinal disease have a good chance of positive outcomes following radiotherapy.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    The symptoms of radiation myelopathy are indistinguishable from the symptoms of myelopathies arising from other causes, including the effects of primary or metastatic spinal cancer [23]. Consequently, diagnoses of radiation myelopathy are made very carefully, via a process of elimination [23]

  2. 2.

    The number of arcs depended on whether the target was a vertebral body or whole vertebra, respectively [32].

  3. 3.

    The BodyFIX® system produces no observed difference in target intrafraction motion between lumbar and thoracic sites [63].

  4. 4.

    Setup utilised vac bags and an indexed wing board.

  5. 5.

    A 3° angular deviation does not affect targetting accuracy but does affect targetting accuracy at the field edges [120].

  6. 6.

    Ma et al. hold that calculation of such values is of reduced significance because they may include systematic error components [64].

References

  1. 1.

    Byrne TN (1992) Spinal cord compression from epidural metastases. N Engl J Med 327(9):614–619

    CAS  PubMed  Google Scholar 

  2. 2.

    Boogerd W, van der Sande JJ (1993) Diagnosis and treatment of spinal cord compression in malignant disease. Cancer Treat Rev 19(2):129–150

    CAS  PubMed  Google Scholar 

  3. 3.

    Guckenberger M, Meyer J, Wilbert J, Baier K, Bratengeier K, Vordermark D, Flentje M (2007) Precision required for dose-escalated treatment of spinal metastases and implications for image-guided radiation therapy (igrt). Radiother Oncol 84(1):56–63

    PubMed  Google Scholar 

  4. 4.

    Cox JD, Ang KK (2003) Radiation oncology: rationale, technique, results. In: Cox JD, Ang KK (eds) Moss’ radiation oncology. Elsevier, Amsterdam

    Google Scholar 

  5. 5.

    Boogerd W, Van der Sande JJ, Kröger R (1992) Early diagnosis and treatment of spinal epidural metastasis in breast cancer: a prospective study. J Neurol Neurosurg Psychiatry 55(12):1188–1193

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Quinn JA, DeAngelis LM (2000) Neurologic emergencies in the cancer patient. Semin Oncol 27(3):311–321

    CAS  PubMed  Google Scholar 

  7. 7.

    Zakaria HM, Llaniguez JT, Telemi E, Chuang M, Abouelleil M, Wilkinson B, Chandra A, Boyce-Fappiano D, Elibe E, Schultz L et al. (2019) Sarcopenia predicts overall survival in patients with lung, breast, prostate, or myeloma spine metastases undergoing stereotactic body radiation therapy (sbrt), independent of histology. Neurosurgery 86:705–716

    Google Scholar 

  8. 8.

    Murphy MJ, Chang S, Gibbs I, Le Q-T, Martin D, Kim D (2001) Image-guided radiosurgery in the treatment of spinal metastases. Neurosurg Focus 11(6):1–7

    Google Scholar 

  9. 9.

    McCormick PC, Torre R, Post KD, Stein BM (1990) Intramedullary ependymoma of the spinal cord. J Neurosurg 72(4):523–532

    CAS  PubMed  Google Scholar 

  10. 10.

    Chun HC, Schmidt-Ullrich RK, Wolfson A, Tercilla OF, Sagerman RH, King GA (1990) External beam radiotherapy for primary spinal cord tumors. J Neurooncol 9(3):211–217

    CAS  PubMed  Google Scholar 

  11. 11.

    Kopelson G, Linggood RM, Kleinman GM, Doucette J, Wang CC (1980) Management of intramedullary spinal cord tumors. Radiology 135(2):473–479

    CAS  PubMed  Google Scholar 

  12. 12.

    Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001) Cancer statistics, 2001. CA Cancer J Clin 51(1):15–36

    CAS  Google Scholar 

  13. 13.

    Bates T (1992) A review of local radiotherapy in the treatment of bone metastases and cord compression. Int J Radiat Oncol Biol Phys 23(1):217–221

    CAS  PubMed  Google Scholar 

  14. 14.

    van der Linden YM, Dijkstra SPDS, Vonk EJA, Marijnen CAM, Leer JWH (2005) Prediction of survival in patients with metastases in the spinal column. Cancer 103(2):320–328

    PubMed  Google Scholar 

  15. 15.

    Lutz S, Berk L, Chang E, Chow E, Hahn C, Hoskin P, Howell D, Konski A, Kachnic L, Lo S et al. (2011) Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline. Int J Radiat Oncol Biol Phys 79(4):965–976

    PubMed  Google Scholar 

  16. 16.

    Bilsky MH, Lis E, Raizer J, Lee H, Boland P (1999) The diagnosis and treatment of metastatic spinal tumor. Oncologist 4(6):459–469

    CAS  PubMed  Google Scholar 

  17. 17.

    Turner S, Marosszeky B, Timms I, Boyages J (1993) Malignant spinal cord compression: a prospective evaluation. Int J Radiat Oncol Biol Phys 26(1):141–146

    CAS  PubMed  Google Scholar 

  18. 18.

    Maranzano E, Latini P, Checcaglini F, Ricci S, Panizza BM, Aristei C, Perrucci E, Beneventi S, Corgna E, Tonato M (1991) Radiation therapy in metastatic spinal cord compression. Cancer 67:1311–1317

    CAS  PubMed  Google Scholar 

  19. 19.

    Ryu S, Fang Yin F, Rock J, Zhu J, Chu A, Kagan E, Rogers L, Ajlouni M, Rosenblum M, Kim JH (2003) Image-guided and intensity-modulated radiosurgery for patients with spinal metastasis. Cancer 97(8):2013–2018

    PubMed  Google Scholar 

  20. 20.

    Blitzer PH (1985) Reanalysis of the RTOG study of the palliation of symptomatic osseous metastasis. Cancer 55(7):1468–1472

    CAS  PubMed  Google Scholar 

  21. 21.

    Coia LR, Hanks GE, Martz K, Steinfeld A, Diamond JJ, Kramer S (1988) Practice patterns of palliative care for the United States 1984–1985. Int J Radiat Oncol Biol Phys 14(6):1261–1269

    CAS  PubMed  Google Scholar 

  22. 22.

    Wong CS, Van Dyk J, Milosevic M, Laperriere NJ (1994) Radiation myelopathy following single courses of radiotherapy and retreatment. Int J Radiat Oncol Biol Phys 30(3):575–581

    CAS  PubMed  Google Scholar 

  23. 23.

    Schultheiss TE, Kun LE, Ang KK, Stephens LC (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31(5):1093–1112

    CAS  PubMed  Google Scholar 

  24. 24.

    Sahgal A, Larson DA, Chang EL (2008) Stereotactic body radiosurgery for spinal metastases: a critical review. Int J Radiat Oncol Biol Phys 71(3):652–665

    PubMed  Google Scholar 

  25. 25.

    Kuo JV, Cabebe E, Al-Ghazi M, Yakoob R, Ramsinghani NS, Sanford R (2002) Intensity-modulated radiation therapy for the spine at the university of california, irvine. Med Dosim 27(2):137–145

    PubMed  Google Scholar 

  26. 26.

    Wara WM, Phillips TL, Sheline GE, Schwade JG (1975) Radiation tolerance of the spinal cord. Cancer 35(6):1558–1562

    CAS  PubMed  Google Scholar 

  27. 27.

    Samant R, Gerig L, Montgomery L, MacRae R, Fox G, Nyiri B, Carty K, MacPherson M (2009) The emerging role of ig-imrt for palliative radiotherapy: a single-institution experience. Curr Oncol 16(3):40

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Sterzing F, Hauswald H, Uhl M, Herm H, Wiener A, Herfarth K, Debus J, Krempien R (2010) Spinal cord sparing reirradiation with helical tomotherapy. Cancer 116(16):3961–3968

    PubMed  Google Scholar 

  29. 29.

    Schultheiss TE, Higgins EM, El-Mahdi AM (1984) The latent period in clinical radiation myelopathy. Int J Radiat Oncol Biol Phys 10(7):1109–1115

    CAS  PubMed  Google Scholar 

  30. 30.

    Sahgal A, Ma L, Weinberg V, Gibbs IC, Chao S, Chang U-K, Werner-Wasik M, Angelov L, Chang EL, Sohn M-J et al. (2012) Reirradiation human spinal cord tolerance for stereotactic body radiotherapy. International Journal of Radiation Oncology* Biology* Physics 82(1):107–116

    Google Scholar 

  31. 31.

    Bilsky MH, Yamada Y, Yenice KM, Lovelock M, Hunt M, Gutin PH, Leibel SA (2004) Intensity-modulated stereotactic radiotherapy of paraspinal tumors: a preliminary report. Neurosurgery 54(4):823–831

    PubMed  Google Scholar 

  32. 32.

    Kuijper IT, Dahele M, Senan S, Verbakel WFAR (2010) Volumetric modulated arc therapy versus conventional intensity modulated radiation therapy for stereotactic spine radiotherapy: a planning study and early clinical data. Radiother Oncol 94(2):224–228

    PubMed  Google Scholar 

  33. 33.

    Mallory M, Pokhrel D, Badkul R, Jiang H, Lominska C, Wang F (2018) Volumetric modulated arc therapy treatment planning of thoracic vertebral metastases using stereotactic body radiotherapy. J Appl Clin Med Phys 19:54–61

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Intensity Modulated Radiation Therapy Collaborative Working Group (2001) Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51(4):880–914

    Google Scholar 

  35. 35.

    Foote M, Letourneau D, Hyde D, Massicotte E, Rampersaud R, Fehlings M, Fisher C, Lewis S, La Macchia N, Eugene Y et al. (2011) Technique for stereotactic body radiotherapy for spinal metastases. J Clin Neurosci 18(2):276–279

    PubMed  Google Scholar 

  36. 36.

    Mahan SL, Ramsey CR, Scaperoth DD, Chase DJ, Byrne TE (2005) Evaluation of image-guided helical tomotherapy for the retreatment of spinal metastasis. Int J Radiat Oncol Biol Phys 63(5):1576–1583

    PubMed  Google Scholar 

  37. 37.

    Szendrői M, Antal I, Szendrői A, Lazáry Á, Pál Varga P (2017) Diagnostic algorithm, prognostic factors and surgical treatment of metastatic cancer diseases of the long bones and spine. EFORT Open Rev 2(9):372–381

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Chang JH, Shin JH, Yamada YJ, Mesfin A, Fehlings MG, Rhines LD, Sahgal A (2016) Stereotactic body radiotherapy for spinal metastases: what are the risks and how do we minimize them? Spine 41(Suppl 20):S238

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Han K, Cheung P, Basran PS, Poon I, Yeung L, Lochray F (2010) A comparison of two immobilization systems for stereotactic body radiation therapy of lung tumors. Radiother Oncol 95(1):103–108

    PubMed  Google Scholar 

  40. 40.

    Mahjoubi K, Daisne JF, Deheneffe S, Huyskens D, Remouchamps V (2013) Preliminary results of a randomized study comparing 2 immobilization systems for stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 87(2):S730–S731

    Google Scholar 

  41. 41.

    Shiu AS, Chang EL, Ye J-S, Lii MF, Rhines LD, Mendel E, Weinberg J, Singh S, Maor MH, Mohan R et al. (2003) Near simultaneous computed tomography image-guided stereotactic spinal radiotherapy: an emerging paradigm for achieving true stereotaxy. International Journal of Radiation Oncology* Biology* Physics 57(3):605–613

    Google Scholar 

  42. 42.

    Chang EL, Shiu AS, Lii M-F, Rhines LD, Mendel E, Mahajan A, Weinberg JS, Mathews LA, Brown BW, Maor MH et al. (2004) Phase I clinical evaluation of near-simultaneous computed tomographic image-guided stereotactic body radiotherapy for spinal metastases. Int J Radiat Oncol Biol Phys 59(5):1288–1294

    PubMed  Google Scholar 

  43. 43.

    Wiggeneraad R, van Egmond J, van Santvoort J (2008) Intrafraction patient movement in spinal IMRT. Consequences for CTV-PTV margins. Medical Centre Haaglanden, The Hague

    Google Scholar 

  44. 44.

    Yin F-F, Ryu S, Ajlouni M, Zhu J, Yan H, Guan H, Faber K, Rock J, Abdalhak M, Rogers L et al. (2002) A technique of intensity-modulated radiosurgery (imrs) for spinal tumors. Med Phys 29(12):2815–2822

    PubMed  Google Scholar 

  45. 45.

    Ryu S, Pugh SL, Gerszten PC, Yin F-F, Timmerman RD, Hitchcock YJ, Movsas B, Kanner AA, Berk LB, Followill DS et al. (2014) RTOG 0631 phase 2/3 study of image guided stereotactic radiosurgery for localized (1–3) spine metastases: phase 2 results. Pract Radiat Oncol 4(2):76–81

    PubMed  Google Scholar 

  46. 46.

    Yamada Y, Lovelock DM, Yenice KM, Bilsky MH, Hunt MA, Zatcky J, Leibel SA (2005) Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: a preliminary report. Int J Radiat Oncol Biol Phys 62(1):53–61

    PubMed  Google Scholar 

  47. 47.

    Beeler WH, Paradis KC, Gemmete JJ, Chaudhary N, Kim MM, Smith SR, Paradis E, Matuszak MM, Park P, Archer PG et al. (2019) Computed tomography myelosimulation versus magnetic resonance imaging registration to delineate the spinal cord during spine stereotactic radiosurgery. World Neurosurg 122:e655–e666

    PubMed  Google Scholar 

  48. 48.

    Husband DJ, Grant KA, Romaniuk CS (2001) MRI in the diagnosis and treatment of suspected malignant spinal cord compression. Br J Radiol 74(877):15–23

    CAS  PubMed  Google Scholar 

  49. 49.

    Mizowaki T, Araki N, Nagata Y, Negoro Y, Aoki T, Hiraoka M (2001) The use of a permanent magnetic resonance imaging system for radiotherapy treatment planning of bone metastases. Int J Radiat Oncol Biol Phys 49(2):605–611

    CAS  PubMed  Google Scholar 

  50. 50.

    Chen C-C, Wan Y-L, Wai Y-Y, Liu H-L (2004) Quality assurance of clinical MRI scanners using ACR MRI phantom: preliminary results. J Digit Imaging 17(4):279–284

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Sahgal A, Ames C, Chou D, Ma L, Huang K, Wei X, Chin C, Weinberg V, Chuang C, Weinstein P et al. (2009) Stereotactic body radiotherapy is effective salvage therapy for patients with prior radiation of spinal metastases. Int J Radiat Oncol Biol Phys 74(3):723–731

    PubMed  Google Scholar 

  52. 52.

    Colaco Rovel J, Park Henry S, Laurans Maxwell S, Chiang Veronica S, Yu James B, Husain Zain A (2016) Spine stereotactic body radiotherapy outcomes in patients with concurrent brain metastases. Cureus 8(7):e679

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Gerszten PC, Monaco III EA, Quader M, Novotny Jr J, Kim JO, Flickinger JC, Huq MS (2010) Setup accuracy of spine radiosurgery using cone beam computed tomography image guidance in patients with spinal implants. J Neurosurg 12(4):413–420

    Google Scholar 

  54. 54.

    Agazaryan N, Tenn SE, Desalles AAF, Selch MT (2008) Image-guided radiosurgery for spinal tumors: methods, accuracy and patient intrafraction motion. Phys Med Biol 53(6):1715

    PubMed  Google Scholar 

  55. 55.

    Yamada Y, Bilsky MH, Lovelock DM, Venkatraman ES, Toner S, Johnson J, Zatcky J, Zelefsky MJ, Fuks Z (2008) High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys 71(2):484–490

    PubMed  Google Scholar 

  56. 56.

    Wang J-Z, Rice R, Mundt A, Sandhu A, Murphy K (2010) Image-guided stereotactic spine radiosurgery on a conventional linear accelerator. Med Dosim 35(1):53–62

    CAS  PubMed  Google Scholar 

  57. 57.

    Choi CH, Kim JH, Kim J, Park JM (2019) Comparison of treatment plan quality among mri-based imrt with a linac, mri-based imrt with tri-co-60 sources, and vmat for spine sabr. PLoS ONE 14(7):e0220039

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Finnigan R, Lamprecht B, Barry T, Jones K, Boyd J, Pullar A, Burmeister B, Foote M (2016) Inter-and intra-fraction motion in stereotactic body radiotherapy for spinal and paraspinal tumours using cone-beam ct and positional correction in six° of freedom. J Med Imaging Radiat Oncol 60(1):112–118

    PubMed  Google Scholar 

  59. 59.

    Cox BW, Spratt DE, Lovelock M, Bilsky MH, Lis E, Ryu S, Sheehan J, Gerszten PC, Chang E, Gibbs I et al. (2012) International spine radiosurgery consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 83(5):e597–e605

    PubMed  Google Scholar 

  60. 60.

    Sahgal A, Bilsky M, Chang EL, Ma L, Yamada Y, Rhines LD, Létourneau D, Foote M, Yu E, Larson DA et al. (2011) Stereotactic body radiotherapy for spinal metastases: current status, with a focus on its application in the postoperative patient: a review. J Neurosurg 14(2):151–166

    Google Scholar 

  61. 61.

    Stroom JC, de Boer HCJ, Huizenga H, Visser AG (1999) Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys 43(4):905–919

    CAS  PubMed  Google Scholar 

  62. 62.

    Stroom JC, Heijmen BJM (2006) Limitations of the planning organ at risk volume (PRV) concept. International Journal of Radiation Oncology* Biology* Physics 66(1):279–286

    Google Scholar 

  63. 63.

    Hyde D, Lochray F, Korol R, Davidson M, Wong CS, Ma L, Sahgal A (2012) Spine stereotactic body radiotherapy utilizing cone-beam CT image-guidance with a robotic couch: intrafraction motion analysis accounting for all six° of freedom. Int J Radiat Oncol Biol Phys 82(3):e555–e562

    PubMed  Google Scholar 

  64. 64.

    Ma L, Sahgal A, Hossain S, Chuang C, Descovich M, Huang K, Gottschalk A, Larson DA (2009) Nonrandom intrafraction target motions and general strategy for correction of spine stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 75(4):1261–1265

    PubMed  Google Scholar 

  65. 65.

    Cai J, Sheng K, Sheehan JP, Benedict SH, Larner JM, Read PW (2007) Evaluation of thoracic spinal cord motion using dynamic MRI. Radiother Oncol 84(3):279–282

    PubMed  Google Scholar 

  66. 66.

    Ballangrud A, Mechalakos J, Yamada J, Lovelock DM, Wu J (2019) Frequency of large intrafractional target motions during spine stereotactic body radiation therapy. Pract Radiat Oncol 10:e45–e49

    PubMed  Google Scholar 

  67. 67.

    Howell DD, James JL, Hartsell WF, Suntharalingam M, Machtay M, Suh JH, Demas WF, Sandler HM, Kachnic LA, Berk LB (2013) Single-fraction radiotherapy versus multifraction radiotherapy for palliation of painful vertebral bone metastases-equivalent efficacy, less toxicity, more convenient. Cancer 119(4):888–896

    PubMed  Google Scholar 

  68. 68.

    Sellin JN, Reichardt W, Bishop AJ, Suki D, Rhines LD, Settle SH, Brown PD, Li J, Rao G, Chang EL et al. (2015) Factors affecting survival in 37 consecutive patients undergoing de novo stereotactic radiosurgery for contiguous sites of vertebral body metastasis from renal cell carcinoma. J Neurosurg 22(1):52–59

    Google Scholar 

  69. 69.

    Ghia AJ, Chang EL, Bishop AJ, Pan HY, Boehling NS, Amini B, Allen PK, Li J, Rhines LD, Tannir NM et al. (2016) Single-fraction versus multifraction spinal stereotactic radiosurgery for spinal metastases from renal cell carcinoma: secondary analysis of phase I/II trials. Journal of Neurosurgery: Spine 24(5):829–836

    PubMed  Google Scholar 

  70. 70.

    Miller JA, Balagamwala EH, Chao ST, Emch T, Suh JH, Djemil T, Angelov L (2017) Spine stereotactic radiosurgery for the treatment of multiple myeloma. J Neurosurg 26(3):282–290

    Google Scholar 

  71. 71.

    Suppli MH, Rosenschold PM, Pappot H, Dahl B, Morgen SS, Vogelius IR, Engelholm SA (2016) Stereotactic radiosurgery versus decompressive surgery followed by postoperative radiotherapy for metastatic spinal cord compression (STEREOCORD): Study protocol of a randomized non-inferiority trial. Journal of radiosurgery and SBRT 4(1):S1

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Herfarth KK, Debus J, Lohr F, Bahner ML, Rhein B, Fritz P, Höss A, Schlegel W, Wannenmacher MF (2001) Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol 19(1):164–170

    CAS  PubMed  Google Scholar 

  73. 73.

    Herfarth KK, Debus J, annenmacher M (2004) Stereotactic radiation therapy of liver metastases: update of the initial phase-I/II trial. In: Controversies in Gastrointestinal Tumor Therapy, volume 38, pages 100–105. Karger Publishers

  74. 74.

    Wulf J, Hädinger U, Oppitz U, Thiele W, Ness-Dourdoumas R, Flentje M (2001) Stereotactic radiotherapy of targets in the lung and liver. Strahlenther Onkol 177(12):645–655

    CAS  PubMed  Google Scholar 

  75. 75.

    Whyte RI, Crownover R, Murphy MJ, Martin DP, Rice TW, DeCamp MM, Rodebaugh R, Weinhous MS, Le Q-T (2003) Stereotactic radiosurgery for lung tumors: preliminary report of a phase I trial. Ann Thoracic Surg 75(4):1097–1101

    Google Scholar 

  76. 76.

    Timmerman RD (2008) An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol 18(4):215–222

    PubMed  Google Scholar 

  77. 77.

    Blomgren H, Lax I, Näslund I, Svanström R (1995) Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator: clinical experience of the first thirty-one patients. Acta Oncol 34(6):861–870

    CAS  PubMed  Google Scholar 

  78. 78.

    Grills IS, Mangona VS, Welsh R, Chmielewski G, McInerney E, Martin S, Wloch J, Ye H, Kestin LL (2010) Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol 28(6):928–935

    PubMed  Google Scholar 

  79. 79.

    Choi CYH, Adler JR, Gibbs IC, Chang SD, Jackson PS, Minn AY, Lieberson RE, Soltys SG (2010) Stereotactic radiosurgery for treatment of spinal metastases recurring in close proximity to previously irradiated spinal cord. Int J Radiat Oncol Biol Phys 78(2):499–506

    PubMed  Google Scholar 

  80. 80.

    Weksberg DC, Palmer MB, Vu KN, Rebueno NC, Sharp HJ, Luo D, Yang JN, Shiu AS, Rhines LD, McAleer MF et al. (2012) Generalizable class solutions for treatment planning of spinal stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 84(3):847–853

    PubMed  Google Scholar 

  81. 81.

    Redmond KJ, Sahgal A, Foote M, Knisely J, Gerszten PC, Chao ST, Suh JH, Sloan AE, Chang EL, Machtay M et al. (2015) Single versus multiple session stereotactic body radiotherapy for spinal metastasis: the risk-benefit ratio. Fut Oncol 11(17):2405–2415

    CAS  Google Scholar 

  82. 82.

    Gerszten PC, Burton SA, Ozhasoglu C, Welch WC (2007) Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine 32(2):193–199

    PubMed  Google Scholar 

  83. 83.

    De Salles AAF, Pedroso AG, Medin P, Agazaryan N, Solberg T, Cabatan-Awang C, Espinosa DM, Ford J, Selch MT (2004) Spinal lesions treated with novalis shaped beam intensity-modulated radiosurgery and stereotactic radiotherapy. J Neurosurg 101:435–440

    PubMed  Google Scholar 

  84. 84.

    Gharzai LA, Beeler WH, Hayman JA, Mancini B, Jagsi R, Pierce L, Moran JM, Dominello MM, Boike T, Griffith K, Jolly S et al. (2019) Recommendations for single-fraction radiation therapy and stereotactic body radiation therapy in palliative treatment of bone metastases: a statewide practice patterns survey. Pract Radiat Oncol 9:e541. https://doi.org/10.1016/j.prro.2019.07.005

    Article  PubMed  Google Scholar 

  85. 85.

    Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of rtog protocol 90–05. Int J Radiat Oncol Biol Phys 47(2):291–298

    CAS  PubMed  Google Scholar 

  86. 86.

    Nieder C, Grosu AL, Andratschke NH, Molls M (2006) Update of human spinal cord reirradiation tolerance based on additional data from 38 patients. Int J Radiat Oncol Biol Phys 66(5):1446–1449

    PubMed  Google Scholar 

  87. 87.

    Sahgal A, Ma L, Gibbs I, Gerszten PC, Ryu S, Soltys S, Weinberg V, Wong S, Chang E, Fowler J et al. (2010) Spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 77(2):548–553

    PubMed  Google Scholar 

  88. 88.

    Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, Keall P, Lovelock M, Meeks S, Papiez L et al. (2010) Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 37(8):4078–4101

    PubMed  Google Scholar 

  89. 89.

    Sohn S, Chung CK, Sohn MJ, Chang U-K, Kim SH, Kim J, Park E (2014) Stereotactic radiosurgery compared with external radiation therapy as a primary treatment in spine metastasis from renal cell carcinoma: a multicenter, matched-pair study. J Neurooncol 119(1):121–128

    PubMed  Google Scholar 

  90. 90.

    Rijken J, Kairn T, Crowe S, Trapp J (2018) Effect of arc length on skin dose from hypofractionated volumetric modulated arc radiotherapy treatments of the lung and spine. Med Dosim 44:309

    PubMed  Google Scholar 

  91. 91.

    Amoush A, Long H, Subedi L, Qi P, Djemil T, Xia P (2017) Dosimetric effect of multileaf collimator leaf width on volumetric modulated arc stereotactic radiotherapy for spine tumors. Med Dosim 42(2):111–115

    PubMed  Google Scholar 

  92. 92.

    Nalichowski A, Kaufman I, Gallo J, Bossenberger T, Solberg T, Ramirez E, Yan Y, Fredrick J, Bichay T, Mayville A et al. (2017) Single fraction radiosurgery/stereotactic body radiation therapy (SBRT) for spine metastasis: a dosimetric comparison of multiple delivery platforms. J Appl Clin Med Phys 18(1):164–169

    PubMed  Google Scholar 

  93. 93.

    Aljabab S, Vellayappan B, Vandervoort E, Bahm J, Zohr R, Sinclair J, Caudrelier J-M, Szanto J, Malone S (2018) Comparison of four techniques for spine stereotactic body radiotherapy: dosimetric and efficiency analysis. J Appl Clin Med Phys 19(2):160–167

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Paddick I (2000) A simple scoring ratio to index the conformity of radiosurgical treatment plans. J Neurosurg 93(Supplement 3):219–222

    PubMed  Google Scholar 

  95. 95.

    ICRU report 91, prescribing, recording, and reporting of stereotactic treatments with small photon beams

  96. 96.

    Jackie QW, Yoo S, Kirkpatrick JP, Thongphiew D, Yin F-F (2009) Volumetric arc intensity-modulated therapy for spine body radiotherapy: comparison with static intensity-modulated treatment. Int J Radiat Oncol Biol Phys 75(5):1596–1604

    Google Scholar 

  97. 97.

    Rijken J, Jordan B, Crowe S, Kairn T, Trapp J (2018) Improving accuracy for stereotactic body radiotherapy treatments of spinal metastases. J Appl Clin Med Phys 19(5):453–462

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Quan EM, Li X, Li Y, Wang X, Kudchadker RJ, Johnson JL, Kuban DA, Lee AK, Zhang X (2012) A comprehensive comparison of IMRT and VMAT plan quality for prostate cancer treatment. Int J Radiat Oncol Biol Phys 83(4):1169–1178

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Guckenberger M, Richter A, Krieger T, Wilbert J, Baier K, Flentje M (2009) Is a single arc sufficient in volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes? Radiother Oncol 93(2):259–265

    PubMed  Google Scholar 

  100. 100.

    Ayala GB, Doan KA, Ko HJ, Park PK, Santiago ED, Kuruvila SJ, Ghia AJ, Briere TM, Wen Z (2018) Imrt planning parameter optimization for spine stereotactic radiosurgery. Med Dosim 44:303

    PubMed  Google Scholar 

  101. 101.

    Furuya T, Phua JH, Ito K, Karasawa K (2019) Feasibility of spine stereotactic body radiotherapy for patients with large tumors in multiple vertebrae undergoing re-irradiation: dosimetric challenge using 3 different beam delivery techniques. Med Dosim 44:415

    PubMed  Google Scholar 

  102. 102.

    Prendergast BM, Fiveash JB, Popple RA, Clark GM, Thomas EM, Minnich DJ, Jacob R, Spencer SA, Bonner JA, Dobelbower MC (2013) Flattening filter-free linac improves treatment delivery efficiency in stereotactic body radiation therapy. J Appl Clin Med Phys 14(3):64–71

    PubMed Central  Google Scholar 

  103. 103.

    Kairn T, Papworth D, Crowe SB, Anderson J, Christie DRH (2016) Dosimetric quality, accuracy, and deliverability of modulated radiotherapy treatments for spinal metastases. Med Dosim 41(3):258–266

    PubMed  Google Scholar 

  104. 104.

    Arumugam S, Berry M, Ochoa C, Xing A, Beeksma B, Vial P (2017) Dose discrepancy between planning system estimation and measurement in spine stereotactic body radiation therapy: a case report. J Med Imaging Radiat Oncol 61:695

    PubMed  Google Scholar 

  105. 105.

    Kyung LY, Iram M, Shahram M, Arjun S, Mark R (2019) Dosimetric comparison of two treatment planning systems for spine sbrt. Med Dosim 45:77

    Google Scholar 

  106. 106.

    Saenz DL, Crownover R, Stathakis S, Papanikolaou N (2019) A dosimetric analysis of a spine sbrt specific treatment planning system. Journal of applied clinical medical physics 20(1):154–159

    PubMed  Google Scholar 

  107. 107.

    Zhen H, Hrycushko B, Lee H, Timmerman R, Pompoš A, Stojadinovic S, Foster R, Jiang SB, Solberg T, Xuejun G (2015) Dosimetric comparison of Acuros XB with collapsed cone convolution/superposition and anisotropic analytic algorithm for stereotactic ablative radiotherapy of thoracic spinal metastases. J Appl Clin Med Phys 16(4):181–192

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Carrasco P, Jornet N, Duch MA, Panettieri V, Weber L, Eudaldo T, Ginjaume M, Ribas M (2007) Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities. Med Phys 34(8):3323–3333

    CAS  PubMed  Google Scholar 

  109. 109.

    Chung H, Jin H, Palta J, Suh T-S, Kim S (2006) Dose variations with varying calculation grid size in head and neck IMRT. Phys Med Biol 51(19):4841

    PubMed  Google Scholar 

  110. 110.

    Aspradakis MM, Byrne JP, Palmans H, Duane S, Conway J, Warrington AP, Rosser K (2010) IPEM Report 103: Small field MV photon dosimetry. Technical report

  111. 111.

    Klein EE, Hanley J, Bayouth J, Yin F-F, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B et al. (2009) Task Group 142 report: quality assurance of medical accelerators. Med Phys 36(9):4197–4212

    PubMed  Google Scholar 

  112. 112.

    Makoto S, Mitsuhiro N, Nobutaka M, Manabu N, Masahiro Hiraoka (2017) Dosimetric impact of translational and rotational setup errors for spine stereotactic body radiotherapy: a phantom study. Med Dosim 43:320

    Google Scholar 

  113. 113.

    Wang H, Shiu A, Wang C, O’Daniel J, Mahajan A, Woo S, Liengsawangwong P, Mohan R, Chang EL (2008) Dosimetric effect of translational and rotational errors for patients undergoing image-guided stereotactic body radiotherapy for spinal metastases. Int J Radiat Oncol Biol Phys 71(4):1261–1271

    PubMed  Google Scholar 

  114. 114.

    Gwak H-S, Yoo H-J, Youn S-M, Chang U, Lee DH, Yoo S-Y, Rhee CH (2005) Hypofractionated stereotactic radiation therapy for skull base and upper cervical chordoma and chondrosarcoma: preliminary results. Stereotact Funct Neurosurg 83(5–6):233–243

    PubMed  Google Scholar 

  115. 115.

    Ryu S, Jin J-Y, Jin R, Rock J, Ajlouni M, Movsas B, Rosenblum M, Kim JH (2007) Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer 109(3):628–636

    PubMed  Google Scholar 

  116. 116.

    Gibbs IC, Kamnerdsupaphon P, Ryu M-R, Dodd R, Kiernan M, Chang SD, Adler JR (2007) Image-guided robotic radiosurgery for spinal metastases. Radiother Oncol 82(2):185–190

    PubMed  Google Scholar 

  117. 117.

    Milker-Zabel S, Zabel A, Thilmann C, Schlegel W, Wannenmacher M, Debus J (2003) Clinical results of retreatment of vertebral bone metastases by stereotactic conformal radiotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 55(1):162–167

    PubMed  Google Scholar 

  118. 118.

    Saw CB, Yakoob R, Enke CA, Lau TP, Ayyangar KM (2001) Immobilization devices for intensity-modulated radiation therapy (IMRT). Med Dosim 26(1):71–77

    CAS  PubMed  Google Scholar 

  119. 119.

    Hoogeman MS, Nuyttens JJ, Levendag PC, Heijmen BJM (2008) Time dependence of intrafraction patient motion assessed by repeat stereoscopic imaging. Int J Radiat Oncol Biol Phys 70(2):609–618

    PubMed  Google Scholar 

  120. 120.

    Jin J-Y, Ryu S, Rock J, Faber K, Chen Q, Ajlouni M, Movsas B (2008) Evaluation of residual patient position variation for spinal radiosurgery using the novalis image guided system. Med Phys 35(3):1087–1093

    PubMed  Google Scholar 

  121. 121.

    Yamoah K, Zaorsky NG, Siglin J, Shi W, Werner-Wasik M, Andrews DW, Dicker AP, Bar-Ad V, Liu H (2014) Spine stereotactic body radiation therapy residual setup errors and intra-fraction motion using the stereotactic X-ray image guidance verification system. Int J Med Phys Clin Eng Radiat Oncol 3(1):1

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Ryu SI, Chang SD, Kim DH, Murphy MJ, Le Q-T, Martin DP, Adler JR Jr (2001) Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery 49(4):838–846

    CAS  PubMed  Google Scholar 

  123. 123.

    Malone S, Szanto J, Perry G, Gerig L, Manion S, Dahrouge S, Crook J (2000) A prospective comparison of three systems of patient immobilization for prostate radiotherapy. International Journal of Radiation Oncology* Biology* Physics 48(3):657–665

    CAS  Google Scholar 

  124. 124.

    Cheung T, Butson MJ, Peter KN (2002) Evaluation of build-up dose from 6 MV X-rays under pelvic and abdominal patient immobilisation devices. Radiat Meas 35(3):235–238

    CAS  Google Scholar 

  125. 125.

    Lee J, Kim J-I, Ye S-J, Kim HJ, Carlson J, Park JM (2015) Dosimetric effects of roll rotational setup errors on lung stereotactic ablative radiotherapy using volumetric modulated arc therapy. Br J Radiol 88(1055):20140862

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Mihaylov IB, Bzdusek K, Kaus M (2011) Carbon fiber couch effects on skin dose for volumetric modulated arcs. Med Phys 38(5):2419–2423

    PubMed  Google Scholar 

  127. 127.

    James R, Tanya K, Scott C, Luis M, Jamie T (2018) A simple method to account for skin dose enhancement during treatment planning of vmat treatments of patients in contact with immobilization equipment. J Appl Clin Med Phys 19:239

    Google Scholar 

  128. 128.

    Meyer J, Wilbert J, Baier K, Guckenberger M, Richter A, Sauer O, Flentje M (2007) Positioning accuracy of cone-beam computed tomography in combination with a HexaPOD robot treatment table. Int J Radiat Oncol Biol Phys 67(4):1220–1228

    PubMed  Google Scholar 

  129. 129.

    Redler G, Stevens T, Cammin J, Malin M, Green O, Mutic S, Pitroda S, Aydogan B (2019) Dosimetric feasibility of utilizing the viewray magnetic resonance guided linac system for image-guided spine stereotactic body radiation therapy. Cureus 11(12):e6364

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    ICRU Prescribing (1999) recording and reporting photon beam therapy (supplement to ICRU report 50). ICRU report, 62

  131. 131.

    Wang X, Yang J, Zhao Z, Luo D, Zhang Y, Weksberg D, Brown PD, Li J, Ghia AJ et al. (2019) Dosimetric impact of esophagus motion in single fraction spine stereotactic body radiotherapy. Phys Med Biol 64(11):115010

    CAS  PubMed  Google Scholar 

  132. 132.

    Foster R, Meyer J, Iyengar P, Pistenmaa D, Timmerman R, Choy H, Solberg T (2013) Localization accuracy and immobilization effectiveness of a stereotactic body frame for a variety of treatment sites. International Journal of Radiation Oncology* Biology* Physics 87(5):911–916

    Google Scholar 

  133. 133.

    Zeng GG, Breen SL, Bayley A, White E, Keller H, Dawson L, Jaffray DA (2009) A method to analyze the cord geometrical uncertainties during head and neck radiation therapy using cone beam CT. Radiother Oncol 90(2):228–230

    PubMed  Google Scholar 

  134. 134.

    Sahgal A, Chou D, Ames C, Ma L, Chuang C, Lamborn K, Huang K, Chin CT, Weinstein P, Larson D (2007) Proximity of spinous/paraspinous radiosurgery metastatic targets to the spinal cord versus risk of local failure. Int J Radiat Oncol Biol Phys 69(3):S243

    Google Scholar 

  135. 135.

    Chang EL, Shiu AS, Mendel E, Mathews LA, Mahajan A, Allen PK, Weinberg JS, Brown BW, Wang XS, Woo SY, Cleeland C (2007) Phase I/II study of stereotactic body radiotherapy for spinal metastasis and its pattern of failure. J Neurosurg 7(2):151–60

    Google Scholar 

  136. 136.

    DCTD, NCI, NIH, DHHS. Cancer Therapy Evaluation Program. Common terminology criteria for adverse events, version 3.0. http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf, 2003. Accessed 6 March 2017

  137. 137.

    Valeriani M, Scaringi C, Blasi L, Carnevale A, De VS, Bonome P, Bracci S, Marrone G, Minniti G, Enrici RM (2015) Multifraction radiotherapy for palliation of painful bone metastases: 20 gy versus 30 gy. Tumori 101(3):318–322

    CAS  PubMed  Google Scholar 

  138. 138.

    Myrehaug S, Soliman H, Tseng C, Heyn C, Sahgal A (2017) Re-irradiation of vertebral body metastases: treatment in the radiosurgery era. Clin Oncol 30:85

    Google Scholar 

  139. 139.

    Thibault I, Chang EL, Sheehan J, Ahluwalia MS, Guckenberger M, Sohn M-J, Ryu S, Foote M, Lo SS, Muacevic A et al. (2015) Response assessment after stereotactic body radiotherapy for spinal metastasis: a report from the spine response assessment in neuro-oncology (SPINO) group. Lancet Oncol 16(16):e595–e603

    PubMed  Google Scholar 

  140. 140.

    Roesch J, Cho JBC, Fahim DK, Gerszten PC, Flickinger JC, Grills IS, Jawad M, Kersh R, Letourneau D, Mantel F et al. (2017) Risk for surgical complications after previous stereotactic body radiotherapy of the spine. Radiat Oncol 12(1):153

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Chakravorty A, Frydenberg E, Shein TT, Ly J, Earls P, Steel T (2017) Multifocal intradural extramedullary anaplastic ependymoma of the spine. Journal of Spine Surgery 3(4):727

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Boyce-Fappiano D, Elibe E, Zhao B, Siddiqui MS, Lee I, Rock J, Ryu S, Siddiqui F (2017) Reirradiation of the spine with stereotactic radiosurgery: efficacy and toxicity. Pract Radiat Oncol 7(6):e409–e417

    PubMed  Google Scholar 

  143. 143.

    Hashmi A, Guckenberger M, Kersh R, Gerszten PC, Mantel F, Grills IS, Flickinger JC, Shin JH, Fahim DK, Winey B et al. (2016) Re-irradiation stereotactic body radiotherapy for spinal metastases: a multi-institutional outcome analysis. J Neurosurg 25(5):646–653

    Google Scholar 

  144. 144.

    Thibault I, Al-Omair A, Masucci GL, Masson-Côté L, Lochray F, Korol R, Cheng L, Xu W, Yee A, Fehlings MG et al. (2014) Spine stereotactic body radiotherapy for renal cell cancer spinal metastases: analysis of outcomes and risk of vertebral compression fracture. J Neurosurg 21(5):711–718

    Google Scholar 

  145. 145.

    Thibault I, Campbell M, Tseng C-L, Atenafu EG, Letourneau D, Eugene Y, Cho BCJ, Lee YK, Fehlings MG, Sahgal A (2015) Salvage stereotactic body radiotherapy (SBRT) following in-field failure of initial SBRT for spinal metastases. Int J Radiat Oncol Biol Phys 93(2):353–360

    PubMed  Google Scholar 

  146. 146.

    Chen F, Chiou S-S, Lin S-F, Lieu A-S, Chen Y-T, Huang C-J (2017) Recurrent spinal primitive neuroectodermal tumor with brain and bone metastases: a case report. Medicine 96:46

    Google Scholar 

  147. 147.

    Yoo GS, Park HC, Yu JI, Lim DH, Cho WK, Lee E, Jung SH, Han Y, Kim E-S, Lee S-H et al. (2017) Stereotactic ablative body radiotherapy for spinal metastasis from hepatocellular carcinoma: its oncologic outcomes and risk of vertebral compression fracture. Oncotarget 8(42):72860

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Valesin Filho ES, De Abreu LC, Lima GHV, De Cubero DIG, Ueno FH, Figueiredo GSL, Valenti VE, de Mello Monteiro CB, Wajnsztejn R, Fujiki EN et al. (2013) Pain and quality of life in patients undergoing radiotherapy for spinal metastatic disease treatment. Int Arch Med 6(1):6

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Switlyk MD, Bruland ØS, Skjeldal S, Hald JK, Seierstad T, Zaikova O (2014) Radiotherapy for spinal metastases from breast cancer with emphasis on local disease control and pain response using repeated mri. Journal of bone oncology 3(1):5–9

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Ning MS, Deegan BJ, Ho JC, Chapman BV, Bishop AJ, Allen PK, Tannir NM, Amini B, Briere TM, Wang XA et al. (2019) Low incidence of late failure and toxicity after spine stereotactic radiosurgery: secondary analysis of phase i/ii trials with long-term follow-up. Radiother Oncol 138:80–85

    PubMed  Google Scholar 

  151. 151.

    Kelley KD, Racareanu R, Sison CP, Gogineni E, Rana Z, Gandhi SV, Salas S, Wagner K, Latefi A, Ghaly MM (2019) Outcomes in the radiosurgical management of metastatic spine disease. Adv Radiat Oncol 4(2):283–293

    PubMed  Google Scholar 

  152. 152.

    Ozdemir Y, Torun N, Guler OC, Yildirim BA, Besen AA, Yetisken AG, Onal HC, Topkan E (2019) Local control and vertebral compression fractures following stereotactic body radiotherapy for spine metastases. Journal of bone oncology 15:100218

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Farooqi A, Bishop AJ, Narang S, Allen PK, Li J, McAleer MF, Tatsui CE, Rhines LD, Amini B, Wang XA et al. (2019) Outcomes after hypofractionated dose-escalation using a simultaneous integrated boost technique for treatment of spine metastases not amenable to stereotactic radiosurgery. Pract Radiat Oncol 9(2):e142–e148

    PubMed  Google Scholar 

  154. 154.

    Ito K, Ogawa H, Shimizuguchi T, Nihei K, Furuya T, Tanaka H, Karasawa K (2018) Stereotactic body radiotherapy for spinal metastases: clinical experience in 134 cases from a single japanese institution. Technol Cancer Res Treatment 17:1533033818806472

    Google Scholar 

Download references

Acknowledgements

Thanks go to David Christie for some guidance on discussing clinical aspects.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James Rijken.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rijken, J., Crowe, S., Trapp, J. et al. A review of stereotactic body radiotherapy for the spine. Phys Eng Sci Med 43, 799–824 (2020). https://doi.org/10.1007/s13246-020-00889-w

Download citation

Keywords

  • Stereotactic
  • SBRT
  • SABR
  • Spine
  • Review
  • Radiotherapy