Advertisement

An inter-centre statistical scale standardisation for quantitatively evaluating prostate tissue on T2-weighted MRI

  • Neda GholizadehEmail author
  • Todsaporn Fuangrod
  • Peter B. Greer
  • Peter Lau
  • Saadallah Ramadan
  • John Simpson
Scientific Paper
  • 81 Downloads

Abstract

Magnetic resonance images (MRI) require intensity standardisation if they are used for the purpose of quantitative analysis as inherent variations in image intensity levels between different image sets are manifest due to technical factors. One approach is to standardise the image intensity values using a statistically applied biological reference tissue. The aim of this study is to compare the performance of differing candidate biological reference tissues for standardising T2WI intensity distributions. Fifty-one prostate cancer patients across two centres with different scanners were evaluated using the percentage interpatient coefficient of variation (%interCV) for four different biological references; femoral bone marrow, ischioanal fossa, obturator-internus muscle and bladder urine. The tissue with the highest reproducibility (lowest %interCV) in both centres was used for intensity standardisation of prostate T2WI using three different statistical measures (mean, Z-score, median + Interquartile Range). The performance of different standardisation methods was evaluated from the assessment of image intensity histograms and the percentage normalised root mean square error (%NRSME) of the healthy peripheral zone tissue. Ischioanal fossa as a reference tissue demonstrated the highest reproducibility with %interCV of 18.9 for centre1 and 11.2 for centre2. Using ischioanal fossa for statistical intensity standardisation and the median + Interquartile Range method demonstrated the lowest %NRMSE across centres for healthy peripheral zone tissues. This study demonstrates ischioanal fossa as a preferred reference tissue for standardising intensity values from T2WI of the prostate. Subsequent image standardisation using the median + Interquartile Range intensity of the reference tissue demonstrated a robust and reliable standardisation method for quantitative image assessment.

Keywords

Standardisation MRI T2WI Quantitative imaging Prostate cancer CV NRMSE 

Notes

Acknowledgements

The authors gratefully acknowledge the funding support provided by the Hunter Cancer Research Alliance (HCRA). N. Gholizadeh gratefully appreciates the UNIPRS scholarship awarded to her by the University of Newcastle, Australia.

Author contributions

The authors’ responsibilities were as follows- Greer, Ramadan, Simpson: designed the research, protocol and project development, data acquisition and edited manuscript; Lau: prostate segmentation; Gholizadeh, Fuangrod, Ramadan: data analysis and wrote manuscript; Simpson: conducted the research and had primary responsibility for the final content of the manuscript.

Funding

This study was funded by the Hunter Cancer Research Alliance (HCRA).

Compliance with ethical standards

Conflict of interest

All authors read and approved the final manuscript. None of the authors had a conflict of interest.

Ethical approval

Ethics approval for the study protocol was obtained from the local area heath ethics committee. This study was conducted under Hunter New England Imaging (HNEI) approval at Calvary Mater Newcastle, Australia.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Engelbrecht MR, Jager GJ, Laheij RJ, Verbeek AL, Van Lier H, Barentsz JO (2002) Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis. Eur Radiol 12(9):2294–2302CrossRefGoogle Scholar
  2. 2.
    Gupta RT, Spilseth B, Patel N, Brown AF, Yu J (2016) Multiparametric prostate MRI: focus on T2-weighted imaging and role in staging of prostate cancer. Abdom Radiol 41(5):831–843CrossRefGoogle Scholar
  3. 3.
    Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26(3):405–421CrossRefGoogle Scholar
  4. 4.
    Shah M, Xiao Y, Subbanna N, Francis S, Arnold DL, Collins DL, Arbel T (2011) Evaluating intensity normalization on MRIs of human brain with multiple sclerosis. Med Image Anal 15(2):267–282CrossRefGoogle Scholar
  5. 5.
    Robitaille N, Mouiha A, Crépeault B, Valdivia F, Duchesne S (2012) Tissue-based MRI intensity standardization: application to multicentric datasets. J Biomed Imaging 2012:4Google Scholar
  6. 6.
    Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 31(4):198–211CrossRefGoogle Scholar
  7. 7.
    Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: the promise of radiomics. Phys Med 38:122–139.  https://doi.org/10.1016/j.ejmp.2017.05.071 CrossRefGoogle Scholar
  8. 8.
    Langer DL, van der Kwast TH, Evans AJ, Trachtenberg J, Wilson BC, Haider MA (2009) Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging 30(2):327–334CrossRefGoogle Scholar
  9. 9.
    Liney GP, Knowles AJ, Manton DJ, Turnbull LW, Blackband SJ, Horsman A (1996) Comparison of conventional single echo and multi-echo sequences with a fast spin-echo sequence for quantitative T2 mapping: application to the prostate. J Magn Reson Imaging 6(4):603–607CrossRefGoogle Scholar
  10. 10.
    Lemaître G, Rastgoo M, Massich J, Vilanova JC, Walker PM, Freixenet J, Meyer-Baese A, Mériaudeau F (2016) Martí R Normalization of t2w-mri prostate images using rician a priori. In: SPIE medical imaging. International Society for Optics and Photonics, pp 978529–978529–978527Google Scholar
  11. 11.
    Lewis S, Besa C, Rosen A, Rastinehad AR, Semaan S, Hectors S, Taouli B (2017) Multiparametric magnetic resonance imaging for transition zone prostate cancer: essential findings, limitations, and future directions. Abdom Radiol 42(11):2732–2744CrossRefGoogle Scholar
  12. 12.
    Serai SD, Trout AT, Fleck RJ, Quinn CT, Dillman JR (2018) Measuring liver T2* and cardiac T2* in a single acquisition. Abdom Radiol.  https://doi.org/10.1007/s00261-018-1477-4 Google Scholar
  13. 13.
    Nyúl LG, Udupa JK (1999) On standardizing the MR image intensity scale. Magn Reson Med 42(6):1072–1081CrossRefGoogle Scholar
  14. 14.
    Lv D, Guo X, Wang X, Zhang J, Fang J (2009) Computerized characterization of prostate cancer by fractal analysis in MR images. J Magn Reson Imaging 30(1):161–168CrossRefGoogle Scholar
  15. 15.
    Madabhushi A, Udupa JK (2006) New methods of MR image intensity standardization via generalized scale. Med Phys 33(9):3426–3434CrossRefGoogle Scholar
  16. 16.
    Shinohara RT, Sweeney EM, Goldsmith J, Shiee N, Mateen FJ, Calabresi PA, Jarso S, Pham DL, Reich DS, Crainiceanu CM (2014) Statistical normalization techniques for magnetic resonance imaging. NeuroImage 6:9–19CrossRefGoogle Scholar
  17. 17.
    Wang S, Burtt K, Turkbey B, Choyke P, Summers RM (2014) Computer aided-diagnosis of prostate cancer on multiparametric MRI: a technical review of current research. BioMed Res Int.  https://doi.org/10.1155/2014/789561 Google Scholar
  18. 18.
    Artan Y, Haider MA, Langer DL, van der Kwast TH, Evans AJ, Yang Y, Wernick MN, Trachtenberg J, Yetik IS (2010) Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields. IEEE Trans Image Process 19(9):2444–2455CrossRefGoogle Scholar
  19. 19.
    Kwak JT, Xu S, Wood BJ, Turkbey B, Choyke PL, Pinto PA, Wang S, Summers RM (2015) Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Med Phys 42(5):2368–2378CrossRefGoogle Scholar
  20. 20.
    Niaf E, Rouvière O, Mège-Lechevallier F, Bratan F, Lartizien C (2012) Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI. Phys Med Biol 57(12):3833CrossRefGoogle Scholar
  21. 21.
    Niaf E, Rouvière O, Lartizien C (2011) Computer-aided diagnosis for prostate cancer detection in the peripheral zone via multisequence MRI. In: SPIE medical imaging. International Society for Optics and Photonics, pp 79633P–79633P–79638Google Scholar
  22. 22.
    Latifoltojar A, Dikaios N, Ridout A, Moore C, Illing R, Kirkham A, Taylor S, Halligan S, Atkinson D, Allen C (2015) Evolution of multi-parametric MRI quantitative parameters following transrectal ultrasound-guided biopsy of the prostate. Prostate Cancer Prostatic Dis 18(4):343CrossRefGoogle Scholar
  23. 23.
    Giannini V, Mazzetti S, Vignati A, Russo F, Bollito E, Porpiglia F, Stasi M, Regge D (2015) A fully automatic computer aided diagnosis system for peripheral zone prostate cancer detection using multi-parametric magnetic resonance imaging. Comput Med Imaging Graph 46:219–226CrossRefGoogle Scholar
  24. 24.
    Daffner R, Lupetin A, Dash N, Deeb Z, Sefczek R, Schapiro R (1986) MRI in the detection of malignant infiltration of bone marrow. Am J Roentgenol 146(2):353–358CrossRefGoogle Scholar
  25. 25.
    Tustison N, Gee J (2009) N4ITK: Nick’s N3 ITK implementation for MRI bias field correction. Insight J 9Google Scholar
  26. 26.
    Pieper S, Halle M, Kikinis R (2004) 3D Slicer. In: IEEE international symposium on biomedical imaging: nano to macro 2004. IEEE, pp 632–635Google Scholar
  27. 27.
    Westwood MA, Firmin DN, Gildo M, Renzo G, Stathis G, Markissia K, Vasili B, Pennell DJ (2005) Intercentre reproducibility of magnetic resonance T2* measurements of myocardial iron in Thalassaemia. Int J Cardiovasc Imaging 21(5):531–538.  https://doi.org/10.1007/s10554-005-0651-2 CrossRefGoogle Scholar
  28. 28.
    Westwood MA, Anderson LJ, Firmin DN, Gatehouse PD, Lorenz CH, Wonke B, Pennell DJ (2003) Interscanner reproducibility of cardiovascular magnetic resonance T2* measurements of tissue iron in thalassemia. J Magn Reson Imaging 18(5):616–620CrossRefGoogle Scholar
  29. 29.
    Byrum CE, MacFall JR, Charles HC, Chitilla VR, Boyko OB, Upchurch L, Smith JS, Rajagopalan P, Passe T, Kim D, Xanthakos S, Ranga K, Krishnan R (1996) Accuracy and reproducibility of brain and tissue volumes using a magnetic resonance segmentation method. Psychiatry Res 67(3):215–234CrossRefGoogle Scholar
  30. 30.
    Patryla L, Galeriua D (2011) Statistical performances measures—models comparison. CEA, ParisGoogle Scholar
  31. 31.
    Totty WG, Murphy WA, Ganz WI, Kumar B, Daum WJ, Siegel BA (1984) Magnetic resonance imaging of the normal and ischemic femoral head. Am J Roentgenol 143(6):1273–1280CrossRefGoogle Scholar
  32. 32.
    Mitchell DG, Kressel HY, Arger PH, Dalinka M, Spritzer CE, Steinberg ME (1986) Avascular necrosis of the femoral head: morphologic assessment by MR imaging, with CT correlation. Radiology 161(3):739–742.  https://doi.org/10.1148/radiology.161.3.3786725 CrossRefGoogle Scholar
  33. 33.
    Ebner F, Kressel HY, Mintz MC, Carlson JA, Cohen EK, Schiebler M, Gefter W, Axel L (1988) Tumor recurrence versus fibrosis in the female pelvis: differentiation with MR imaging at 1.5 T. Radiology 166(2):333–340.  https://doi.org/10.1148/radiology.166.2.3422025 CrossRefGoogle Scholar
  34. 34.
    Glazer H, Lee J, Levitt R, Heiken J, Ling D, Totty W, Balfe D, Emani B, Wasserman T, Murphy W (1985) Radiation fibrosis: differentiation from recurrent tumor by MR imaging. Radiology 156(3):721–726CrossRefGoogle Scholar
  35. 35.
    Rosenkrantz AB, Bennett GL, Doshi A, Deng F-M, Babb JS, Taneja SS (2015) T2-weighted imaging of the prostate: Impact of the BLADE technique on image quality and tumor assessment. Abdom Imaging 40(3):552–559.  https://doi.org/10.1007/s00261-014-0225-7 CrossRefGoogle Scholar
  36. 36.
    Iordanescu G, Brendler C, Crawford SE, Wyrwicz AM, Venkatasubramanian PN, Doll JA (2015) MRS measured fatty acid composition of periprostatic adipose tissue correlates with pathological measures of prostate cancer aggressiveness. J Magn Reson Imaging 42(3):651–657CrossRefGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2019

Authors and Affiliations

  • Neda Gholizadeh
    • 1
    Email author
  • Todsaporn Fuangrod
    • 2
  • Peter B. Greer
    • 3
    • 4
  • Peter Lau
    • 5
    • 6
  • Saadallah Ramadan
    • 1
    • 5
  • John Simpson
    • 3
    • 4
  1. 1.School of Health SciencesUniversity of NewcastleCallaghanAustralia
  2. 2.School of Medicine and Public Health, HRH Princess Chulabhorn College of Medical ScienceChulabhorn Royal AcademyBangkokThailand
  3. 3.Department of Radiation OncologyCalvary Mater NewcastleNewcastleAustralia
  4. 4.School of Physics and MathematicsUniversity Of NewcastleCallaghan, NewcastleAustralia
  5. 5.Imaging CentreHunter Medical Research Institute (HMRI)New Lambton HeightsAustralia
  6. 6.Department of RadiologyCalvary Mater NewcastleNewcastleAustralia

Personalised recommendations