Australasian recommendations for quality assurance in kilovoltage radiation therapy from the Kilovoltage Dosimetry Working Group of the Australasian College of Physical Scientists and Engineers in Medicine

  • Robin HillEmail author
  • Brendan Healy
  • Duncan Butler
  • David Odgers
  • Simran Gill
  • Jessica Lye
  • Tina Gorjiara
  • Dane Pope
  • Brendan Hill
ACPSEM Position Paper


The Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) Radiation Oncology Specialty Group (ROSG) formed a series of working groups to develop recommendations for guidance of radiation oncology medical physics practice within the Australasian setting. These recommendations provide a standard for safe work practices and quality control. It is the responsibility of the medical physicist to ensure that locally available equipment and procedures are sufficiently sensitive to establish compliance. The recommendations are endorsed by the ROSG, have been subject to independent expert reviews and have also been approved by the ACPSEM Council. For the Australian audience, these recommendations should be read in conjunction with the Tripartite Radiation Oncology Practice Standards and should be read in conjunction with relevant national, state or territory legislation which take precedence over the ACPSEM publication Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group, RANZCR, 2011a; Kron et al. Clin Oncol 27(6):325–329, 2015; Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group, RANZCR, 2018a, b).


Kilovoltage X-rays Radiation dosimetry Treatment planning Quality assurance 



American Association of Physicists in Medicine


Australasian College of Physical Scientists and Engineers in Medicine


Applicator factor


Australian Radiation Protection and Nuclear Safety Agency


British Journal of Radiology


Backscatter factor


Canadian Association of Provincial Cancer Agencies


Closed circuit television


Canadian Organization of Medical Physicists


Focus-surface distance


Gray, unit of absorbed dose (J/kg)


Half value layer


International Atomic Energy Agency Technical Reports Series


Institution of Physics and Engineering in Medicine and Biology


Inverse square law


National Radiation Laboratory (now NCRS)


National Centre for Radiation Science


Optically Stimulated Luminescent Dosimeter


Percentage depth dose


Quality assurance


Relative output factor


Radiation Oncology Medical Physicist


Radiation Oncology Specialty Group


Source-chamber distance


Source-surface distance


Task group


Thermoluminescent dosimetry



The authors would like to acknowledge the work done by the past and current chairs of the ACPSEM ROSG, being Michael Bailey and Mario Perez respectively, for their support in the implementation of the position papers and organisation of the Radiation Oncology working parties. The authors would also like to thank their colleagues in their respective organisations for many valuable discussions in this project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Caccialanza M, Piccinno R, Percivalle S, Rozza M (2009) Radiotherapy of carcinomas of the skin overlying the cartilage of the nose: our experience in 671 lesions. J Eur Acad Dermatol Venereol 23(9):1044–1049PubMedGoogle Scholar
  2. 2.
    Poen JC (1999) Clinical applications of orthovoltage radiotherapy: tumours of the skin, endorectal therapy and intraoperative radiation therapy. Kilovoltage X-ray beam dosimetry for radiotherapy and radiobiology. Medical Physics Publishing, Madison, WisconsinGoogle Scholar
  3. 3.
    Locke J, Karimpour S, Young G, Lockett MA, Perez CA (2001) Radiotherapy for epithelial skin cancer. Int J Radiat Oncol Biol Phys 51(3):748–755PubMedGoogle Scholar
  4. 4.
    Amdur RJ, Kalbaugh KJ, Ewald LM, Parsons JT, Mendenhall WM, Bova FJ, Million RR (1992) Radiation therapy for skin cancer near the eye: kilovoltage X-rays versus electrons. Int J Radiat Oncol Biol Phys 23(4):769–779PubMedGoogle Scholar
  5. 5.
    Tracey E, Ling Li L, Baker D, Dobrovic A, Bishop J (2007) Cancer in New South Wales: incidence and mortality 2007. Cancer Institute NSW, EveleighGoogle Scholar
  6. 6.
    Eaton DJ, Duck S (2010) Dosimetry measurements with an intra-operative X-ray device. Phys Med Biol 55(12):N359–N369PubMedGoogle Scholar
  7. 7.
    Eaton DJ, Barber E, Ferguson L, Mark Simpson G, Collis CH (2012) Radiotherapy treatment of keloid scars with a kilovoltage X-ray parallel pair. Radiother Oncol 102(3):421–423. CrossRefPubMedGoogle Scholar
  8. 8.
    Doornbos JF, Stoffel TJ, Hass AC, Hussey DH, Vigliotti AP, Wen BC, Zahra MK, Sundeen V (1990) The role of kilovoltage irradiation in the treatment of keloids. Int J Radiat Oncol Biol Phys 18(4):833–839PubMedGoogle Scholar
  9. 9.
    Li XA, Ma CM, Salhani D, Agboola O (1998) Dosimetric evaluation of a widely used kilovoltage X-ray unit for endocavitary radiotherapy. Med Phys 25(8):1464–1471PubMedGoogle Scholar
  10. 10.
    McCullough EC (1990) Selection of techniques for orthovoltage radiation therapy. Int J Radiat Oncol Biol Phys 18(5):1237–1238PubMedGoogle Scholar
  11. 11.
    Jepsen ME, Gniadecki R (2015) Treatment of primary cutaneous anaplastic large cell lymphoma with superficial X-rays. Dermatol Rep 7(1):5888Google Scholar
  12. 12.
    Reichl B, Block A, Schäfer U, Bert C, Müller R, Jung H, Rödel F (2015) DEGRO practical guidelines for radiotherapy of non-malignant disorders. Strahlenther Onkol 191(9):701–709PubMedGoogle Scholar
  13. 13.
    Ebert MA, Carruthers B, Lanzon PJ, Haworth A, Clarke J, Caswell NM, Siddiqui SA (2002) Dosimetry of a low-kV intra-operative X-ray source using basic analytical beam models. Australas Phys Eng Sci Med 25(3):119–123PubMedGoogle Scholar
  14. 14.
    Schneider F, Fuchs H, Lorenz F, Steil V, Ziglio F, Kraus-Tiefenbacher U, Lohr F, Wenz F (2009) A novel device for intravaginal electronic brachytherapy. Int J Radiat Oncol Biol Phys 74(4):1298–1305PubMedGoogle Scholar
  15. 15.
    Hill R, Healy B, Holloway L, Kuncic Z, Thwaites D, Baldock C (2014) Advances in kilovoltage X-ray beam dosimetry. Phys Med Biol 59(6):R183PubMedGoogle Scholar
  16. 16.
    Dunscombe P, Johnson H, Arsenault C, Mawko G, Bissonnette JP, Seuntjens J (2007) Development of quality control standards for radiation therapy equipment in Canada. J Appl Clin Med Phys 8(1):108–116PubMedCentralGoogle Scholar
  17. 17.
    Van Dyk J (ed) (1999) The modern technology of radiation oncology. Medical Physics Publishing, Madison, WisconsinGoogle Scholar
  18. 18.
    IAEA (2008) Setting up a radiotherapy programme: clinical, medical physics, radiation protection and safety aspects. International Atomic Energy Agency, ViennaGoogle Scholar
  19. 19.
    Australia Standards (1994) Medical electrical equipment—particular requirements for safety—therapeutic X-ray generators 3200.2.8:1994 Standards Australia. SydneyGoogle Scholar
  20. 20.
    Australia Standards (1994) Safety signs for the occupational environment AS 1319–1994 Standards Australia. SydneyGoogle Scholar
  21. 21.
    Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group (2011) Tripartite radiation oncology practice standards. RANZCR, SydneyGoogle Scholar
  22. 22.
    ARPANSA (2008) Code of practice for radiation protection in the medical applications of ionizing radiation. Radiation protection series no. 14. Australian Radiation Protection and Nuclear Safety Agency, Miranda, NSWGoogle Scholar
  23. 23.
    ARPANSA (2008) Safety guide for radiation protection in radiotherapy. Radiation protection series no. 14.3. Australian Radiation Protection and Nuclear Safety Agency, Miranda, NSWGoogle Scholar
  24. 24.
    McGinley PH (2002) Shielding techniques for radiation oncology facilities, 2nd edn. Medical Physics Publishing, Madison, WisconsinGoogle Scholar
  25. 25.
    NCRP (2005) Structural shielding design and evaluation for megavoltage X- and gamma-ray radiotherapy facilities. National Council on Radiation Protection and Measurements (NCRP), Washington, DCGoogle Scholar
  26. 26.
    IAEA (2006) Radiation protection in the design of radiotherapy facilities IAEA safety report series no. 47. International Atomic Energy Agency, ViennaGoogle Scholar
  27. 27.
    Standards Australia (2015) Medical electrical equipment Particular requirements for the basic safety and essential performance of therapeutic X-ray equipment operating in the range 10 kV to 1 MV. AS/NZS IEC 60601.2.8:2015 Standards Australia, SydneyGoogle Scholar
  28. 28.
    Furstoss C (2018) COMP report: CPQR technical quality control guidelines for kilovoltage X ray radiotherapy machines. J Appl Clin Med Phys 19(2):18–21. CrossRefPubMedGoogle Scholar
  29. 29.
    Santos EF, Evans S, Ford EC, Gaiser JE, Hayden SE, Huffman KE, Johnson JL, Mechalakos JG, Stern RL, Terezakis S (2015) Medical physics practice guideline 4. A: development, implementation, use and maintenance of safety checklists. J Appl Clin Med Phys 16(3):37–59PubMedCentralGoogle Scholar
  30. 30.
    Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group (2011) Tripartite radiation oncology practice standards supplementary guide. RANZCR, SydneyGoogle Scholar
  31. 31.
    Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group (2018) Radiation oncology practice standards part A: fundamentals. RANZCR, SydneyGoogle Scholar
  32. 32.
    Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group (2018) Radiation oncology practice standards part B: guidelines, RANZCR, SydneyGoogle Scholar
  33. 33.
    Abdel-Rahman W, Podgorsak EB (2010) Energy transfer and energy absorption in photon interactions with matter revisited: a step-by-step illustrated approach. Radiat Phys Chem 79(5):552–566Google Scholar
  34. 34.
    Ma CM, Coffey CW, DeWerd LA, Liu C, Nath R, Seltzer SM, Seuntjens JP (2001) AAPM protocol for 40–300 kV X-ray beam dosimetry in radiotherapy and radiobiology. Med Phys 28(6):868–893PubMedGoogle Scholar
  35. 35.
    Williams JR, Thwaites DI (2000) Radiotherapy physics in practice. Oxford University Press, OxfordGoogle Scholar
  36. 36.
    Baldwin Z, Fitchew R (2014) The influence of focal spot size, shape, emission profile and position on field coverage in a Gulmay D3300 Kilovoltage X-ray therapy unit. Australas Phys Eng Sci Med 37(3):515–523PubMedGoogle Scholar
  37. 37.
    Oliveira A, Fartaria M, Cardoso J, Santos L, Oliveira C, Pereira M, Alves J (2015) The determination of the focal spot size of an X-ray tube from the radiation beam profile. Radiat Meas 82:138–145Google Scholar
  38. 38.
    Heales JC, Harrett A, Blake S (1998) Timer error and beam quality variation during “ramp-up” of a superficial X-ray therapy unit. Br J Radiol 71:1306–1309PubMedGoogle Scholar
  39. 39.
    Aspradakis MM, Zucchetti P (2015) Acceptance, commissioning and clinical use of the WOmed T-200 kilovoltage X-ray therapy unit. Br J Radiol 88(1055):20150001PubMedPubMedCentralGoogle Scholar
  40. 40.
    Butson MJ, Mathur J, Metcalfe PE (1995) Dose characteristics of a new 300 kVp orthovoltage machine. Australas Phys Eng Sci Med 18(3):133–138PubMedGoogle Scholar
  41. 41.
    Jurado D, Eudaldo T, Carrasco P, Jornet N, Ruiz A, Ribas M (2005) Pantak Therapax SXT 150: performance assessment and dose determination using IAEA TRS-398 protocol. Br J Radiol 78(932):721–732PubMedGoogle Scholar
  42. 42.
    Palmer AL, Pearson M, Whittard P, McHugh KE, Eaton DJ (2016) Current status of kilovoltage (kV) radiotherapy in the UK: installed equipment, clinical workload, physics quality control and radiation dosimetry. Br J Radiol 89:20160641PubMedPubMedCentralGoogle Scholar
  43. 43.
    Steenbeke F, Gevaert T, Tournel K, Engels B, Verellen D, Storme G, De Ridder M (2015) Quality assurance of a 50-kV radiotherapy unit using EBT3 GafChromic Film A Feasibility Study. Technol Cancer Res Treat 15:163–170PubMedGoogle Scholar
  44. 44.
    Sheu R-D, Powers A, Lo Y-C (2015) Commissioning a 50–100 kV X-ray unit for skin cancer treatment. J Appl Clin Med Phys 16:161–174PubMedCentralGoogle Scholar
  45. 45.
    Aukett RJ, Burns JE, Greener AG, Harrison RM, Moretti C, Nahum AE, Rosser KE (2005) Addendum to the IPEMB code of practice for the determination of absorbed dose for X-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL). Phys Med Biol 50(12):2739–2748PubMedGoogle Scholar
  46. 46.
    Klevenhagen SC, Aukett RJ, Harrison RM, Moretti C, Nahum AE, Rosser KE (1996) The IPEMB code of practice for the determination of absorbed dose for X-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL; 10–300 kV generating potential). Phys Med Biol 41(12):2605–2625Google Scholar
  47. 47.
    Nederlandse Commissie voor Stralingsdosimetrie (1997) NCS Report 10, Dosimetry for low and medium energy X-rays: a code of practice in radiotherapy and radiobiology. Netherlands Commission on Radiation Dosimetry, DelftGoogle Scholar
  48. 48.
    Andreo P, Burns DT, Hohlfield K, Huq MS, Kanai T, Laitano F, Smyth V, Vynckier S (2000) Absorbed dose determination in external beam radiotherapy, an international code of practice for dosimetry based on standards of absorbed dose to water, technical report series no. 398. International Atomic Energy Agency, ViennaGoogle Scholar
  49. 49.
    Mayles P (2007) Kilovoltage X-rays. In: Mayles P, Nahum AE, Rosenwald J (eds) Handbook of radiotherapy physics. CRC Press, Boca Raton, pp 439–449Google Scholar
  50. 50.
    De Prez L, de Pooter J (2008) The new NMi orthovolt X-rays absorbed dose to water primary standard based on water calorimetry. Phys Med Biol 53(13):3531PubMedGoogle Scholar
  51. 51.
    Krauss A, Büermann L, Kramer HM, Selbach HJ (2012) Calorimetric determination of the absorbed dose to water for medium-energy X-rays with generating voltages from 70 to 280 kV. Phys Med Biol 57(19):6245PubMedGoogle Scholar
  52. 52.
    Seuntjens J, Duane S (2009) Photon absorbed dose standards. Metrologia 46(2):S39Google Scholar
  53. 53.
    Pinto M, Pimpinella M, Quini M, D’Arienzo M, Astefanoaei I, Loreti S, Guerra A (2016) A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy X-ray filtered beams. Phys Med Biol 61(4):1738PubMedGoogle Scholar
  54. 54.
    Ma CM, Li XA, Seuntjens JP (1998) Study of dosimetry consistency for kilovoltage X-ray beams. Med Phys 25(12):2376–2384PubMedGoogle Scholar
  55. 55.
    Jhala E, Steer B, Laban J, Greig L (2009) Issues encountered with kilovoltage X-ray reference dosimetry when changing codes of practice from TRS 277 to TRS 398. Australas Phys Eng Sci Med 32(1):11–15PubMedGoogle Scholar
  56. 56.
    Munck Af Rosenschold P, Nilsson P, Knoos T (2008) Kilovoltage X-ray dosimetry-an experimental comparison between different dosimetry protocols. Phys Med Biol 53(16):4431–4442PubMedGoogle Scholar
  57. 57.
    Peixoto JG, Andreo P (2000) Determination of absorbed dose to water in reference conditions for radiotherapy kilovoltage X-rays between 10 and 300 kV: a comparison of the data in the IAEA, IPEMB, DIN and NCS dosimetry protocols. Phys Med Biol 45(3):563–575PubMedGoogle Scholar
  58. 58.
    Yoo S, Grimm D, Zhu R, Jursinic P, Lopez F, Rownd J, Gillin M (2002) Clinical implementation of AAPM TG61 protocol for kilovoltage X-ray beam dosimetry. Med Phys 29(10):2269–2273PubMedGoogle Scholar
  59. 59.
    Burns DT, Büermann L (2009) Free-air ionization chambers. Metrologia 46(2):S9–S23Google Scholar
  60. 60.
    Lye JE, Butler DJ, Webb DV (2010) Monte Carlo correction factors for the ARPANSA kilovoltage free-air chambers and the effect of moving the limiting aperture. Metrologia 47(1):11–20Google Scholar
  61. 61.
    Seuntjens J, Thierens H, Van der Plaetsen A, Segaert O (1988) Determination of absorbed dose to water with ionisation chambers calibrated in free air for medium-energy X-rays. Phys Med Biol 33(10):1171Google Scholar
  62. 62.
    Johns HE, Cunningham JR (1983) The physics of radiology. Charles C. Thomas, Springfield, IllinoisGoogle Scholar
  63. 63.
    Hill RF, Healy B, Holloway L, Kuncic Z, Thwaites D, Baldock C (2014) Advances in kilovoltage X-ray beam dosimetry. Phys Med Biol 59(6):R183PubMedGoogle Scholar
  64. 64.
    Baines J, Sim L (2014) The variation of HVL with focal spot to chamber distance as a function of beam quality for the Pantak Therapax 150 X-ray unit and the implications on dose to water determination using the IPEMB code of practice. Australas Phys Eng Sci Med 37(3):559–566PubMedGoogle Scholar
  65. 65.
    Burton NLA, Brimelow J, Welsh AD (2008) A regional audit of kilovoltage X-rays: a single centre approach. Brit J Radiol 81(965):422–426PubMedGoogle Scholar
  66. 66.
    Nisbet A, Thwaites DI, Sheridan ME (1998) A dosimetric intercomparison of kilovoltage X-rays, megavoltage photons and electrons in the Republic of Ireland. Radiother Oncol 48(1):95–101PubMedGoogle Scholar
  67. 67.
    Mayles P, Nahum AE, Rosenwald J (2007) Kilovoltage X-rays. Handbook of radiotherapy physics. CRC Press, Boca Raton, FloridaGoogle Scholar
  68. 68.
    Nahum AE (1999) kV X-ray dosimetry: current status and future challenges. In: Ma CM, Seuntjens JP (eds) Kilovoltage X-ray beam dosimetry for radiotherapy and radiobiology. Medical Physics Publishing, Madison, Wisconsin, pp 7–26Google Scholar
  69. 69.
    Klevenhagen SC, D’Souza D, I. B (1991) Complications in low energy X-ray dosimetry caused by electron contaminations. Phys Med Biol 36(8):1111–1116Google Scholar
  70. 70.
    Healy BJ, Gibbs A, Murry RL, Prunster JE, Nitschke KN (2005) Output factor measurements for a kilovoltage X-ray therapy unit. Australas Phys Eng Sci Med 28(2):115–121PubMedGoogle Scholar
  71. 71.
    Chica U, Anguiano M, Lallena AM (2008) Study of the formalism used to determine the absorbed dose for low-energy X-ray beams. Phys Med Biol 53(23):6963–6977PubMedGoogle Scholar
  72. 72.
    Evans PA, Moloney AJ, Mountford PJ (2001) Performance assessment of the Gulmay D3300 kilovoltage X-ray therapy unit. Brit J Radiol 74(882):537–547PubMedGoogle Scholar
  73. 73.
    Hill R, Mo Z, Haque M, Baldock C (2009) An evaluation of ionization chambers for the relative dosimetry of kilovoltage X-ray beams. Med Phys 36(9):3971–3981PubMedGoogle Scholar
  74. 74.
    Hill R, Holloway L, Baldock C (2005) A dosimetric evaluation of water equivalent phantoms for kilovoltage X-ray beams. Phys Med Biol 50(21):N331–N344PubMedGoogle Scholar
  75. 75.
    Perrin BA, Whitehurst P, Cooper P, Hounsell AR (2001) The measurement of kappach factors for application with the IPEMB very low energy dosimetry protocol. Phys Med Biol 46(7):1985–1995PubMedGoogle Scholar
  76. 76.
    Dowdell S, Tyler M, McNamara J, Sloan K, Ceylan A, Rinks A (2016) Potential errors in relative dose measurements in kilovoltage photon beams due to polarity effects in plane-parallel ionisation chambers. Phys Med Biol 61(23):8395PubMedGoogle Scholar
  77. 77.
    Hugtenburg RP, Johnston K, Chalmers GJ, Beddoe AH (2001) Application of diamond detectors to the dosimetry of 45 and 100 kvp therapy beams: comparison with a parallel-plate ionization chamber and Monte Carlo. Phys Med Biol 46(9):2489–2501PubMedGoogle Scholar
  78. 78.
    Livingstone J, Stevenson AW, Butler DJ, Häusermann D, Adam J-F (2016) Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron X-ray fields. Med Phys 43(7):4283–4293PubMedGoogle Scholar
  79. 79.
    Seuntjens J, Aalbers AHL, Grimbergen TWM, Mijnheer BJ, Thierens H, Van Dam J, Wittkamper FW, Zoetelief J, Piessens M, Piret P (1999) Suitability of diamond detectors to measure central axis depth kerma curves for low- and medium-energy X-rays. In: Ma CM, Seuntjens JP (eds) Kilovoltage X-ray beam dosimetry for radiotherapy and radiobiology. Medical Physics Publishing, Madison, Wisconsin, pp 227–238Google Scholar
  80. 80.
    Gill S, Hill R (2013) A study on the use of Gafchromic™ EBT3 film for output factor measurements in kilovoltage X-ray beams. Australas Phys Eng Sci Med 36(4):465–471PubMedGoogle Scholar
  81. 81.
    Chica U, Florez G, Anguiano M, Lallena AM (2010) A simple analytical expression to calculate the backscatter factor for low energy X-ray beams. Phys Med 27:75–80Google Scholar
  82. 82.
    British Journal of Radiology: Supplement 25 (1996) Central axis depth dose data for use in radiotherapy. British Institute of Radiology, LondonGoogle Scholar
  83. 83.
    Lee CH, Chan KK (2000) Electron contamination from the lead cutout used in kilovoltage radiotherapy. Phys Med Biol 45(1):1PubMedGoogle Scholar
  84. 84.
    Lye JE, Butler DJ, Webb DV (2010) Enhanced epidermal dose caused by localized electron contamination from lead cutouts used in kilovoltage radiotherapy. Med Phys 37(8):3935–3939PubMedGoogle Scholar
  85. 85.
    Nelson VK, Hill RF (2011) Backscatter factor measurements for kilovoltage X-ray beams using thermoluminescent dosimeters (TLDs). Radiat Meas 46(12):2097–2099Google Scholar
  86. 86.
    Newton J, Oldham M, Thomas A, Li Y, Adamovics J, Kirsch DG, Das S (2011) Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques. Med Phys 38(12):6754–6762PubMedPubMedCentralGoogle Scholar
  87. 87.
    Bassinet C, Huet C, Derreumaux S, Brunet G, Chéa M, Baumann M, Lacornerie T, Gaudaire-Josset S, Trompier F, Roch P (2013) Small fields output factors measurements and correction factors determination for several detectors for a CyberKnife® and linear accelerators equipped with microMLC and circular cones. Med Phys 40(7):071725PubMedGoogle Scholar
  88. 88.
    Das IJ, Ding GX, Ahnesjö A (2008) Small fields: nonequilibrium radiation dosimetry. Med Phys 35(1):206–215PubMedGoogle Scholar
  89. 89.
    Mancosu P, Reggiori G, Stravato A, Gaudino A, Lobefalo F, Palumbo V, Navarria P, Ascolese A, Picozzi P, Marinelli M (2015) Evaluation of a synthetic single-crystal diamond detector for relative dosimetry on the Leksell Gamma Knife Perfexion radiosurgery system. Med Phys 42(9):5035–5041PubMedGoogle Scholar
  90. 90.
    McKerracher C, Thwaites D (1999) Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition. Phys Med Biol 44(9):2143PubMedGoogle Scholar
  91. 91.
    Morales JE, Crowe SB, Hill R, Freeman N, Trapp J (2014) Dosimetry of cone-defined stereotactic radiosurgery fields with a commercial synthetic diamond detector. Med Phys 41(11):111702PubMedGoogle Scholar
  92. 92.
    Morales J, Hill R, Crowe S, Kairn T, Trapp J (2014) A comparison of surface doses for very small field size X-ray beams: Monte Carlo calculations and radiochromic film measurements. Australas Phys Eng Sci Med 37(2):303–309PubMedGoogle Scholar
  93. 93.
    Pidikiti R, Stojadinovic S, Speiser M, Song KH, Hager F, Saha D, Solberg TD (2011) Dosimetric characterization of an image-guided stereotactic small animal irradiator. Phys Med Biol 56(8):2585–2599PubMedGoogle Scholar
  94. 94.
    Verhaegen F, Granton P, Tryggestad E (2011) Small animal radiotherapy research platforms. Phys Med Biol 56(12):R55–R83PubMedGoogle Scholar
  95. 95.
    Verhaegen F, van Hoof S, Granton PV, Trani D (2014) A review of treatment planning for precision image-guided photon beam pre-clinical animal radiation studies. Z Med Phys 24:323–334PubMedGoogle Scholar
  96. 96.
    Noblet C, Chiavassa S, Smekens F, Sarrut D, Passal V, Suhard J, Lisbona A, Paris F, Delpon G (2016) Validation of fast Monte Carlo dose calculation in small animal radiotherapy with EBT3 radiochromic films. Phys Med Biol 61(9):3521PubMedGoogle Scholar
  97. 97.
    Damodar J, Pope D, Odgers D, Hill R (2015) O065 A study of solid state detectors for kilovoltage X-ray beam dosimetry. In: EPSM2015. Wellington, New ZealandGoogle Scholar
  98. 98.
    Damodar J, Odgers D, Pope D, Hill R (2018) A study on the suitability of the PTW microDiamond detector for kilovoltage X-ray beam dosimetry. Appl Rad Iso. CrossRefGoogle Scholar
  99. 99.
    Carlsson CA (1993) Differences in reported backscatter factors for low-energy X-rays: a literature study. Phys Med Biol 38(4):521Google Scholar
  100. 100.
    Grosswendt B (1984) Backscatter factors for X-rays generated at voltages between 10 and 100 kV. Phys Med Biol 29(5):579–591PubMedGoogle Scholar
  101. 101.
    Grosswendt B (1990) Dependence of the photon backscatter factor for water on source-to-phantom distance and irradiation field size. Phys Med Biol 35(9):1233–1245Google Scholar
  102. 102.
    Ma CM, Seuntjens JP (1999) Mass-energy absorption coefficient and backscatter factor ratios for kilovoltage X-ray beams. Phys Med Biol 44(1):131–143PubMedGoogle Scholar
  103. 103.
    Grosswendt B (1993) Dependence of the photon backscatter factor for water on irradiation field size and source-to-phantom distances between 1.5 and 10 cm. Phys Med Biol 38(2):305–310Google Scholar
  104. 104.
    Klevenhagen SC (1989) Experimentally determined backscatter factors for X-rays generated at voltages between 16 and 140 kV. Phys Med Biol 34(12):1871–1882Google Scholar
  105. 105.
    Knight RT (1994) Backscatter factors for low and medium energy X-rays calculated by the Monte Carlo method (trans: Department P). Royal Marsden NHS Trust, SuttonGoogle Scholar
  106. 106.
    Knight RT, Nahum AE (1994) Depth and field-size dependence of ratios of mass-energy absorption coefficient, water-to-air, for kV X-ray dosimetry. In: Paper presented at the IAEA Proceedings Series, ViennaGoogle Scholar
  107. 107.
    Hewson E, Butson M, Hill R (2018) Evaluating TOPAS for the calculation of backscatter factors for low energy X-ray beams. Phys Med Biol. CrossRefPubMedGoogle Scholar
  108. 108.
    Butson MJ, Cheung T, Yu PKN (2008) Measurement of dose reductions for superficial X-rays backscattered from bone interfaces. Phys Med Biol 53(17):N329–N336PubMedGoogle Scholar
  109. 109.
    Healy BJ, Sylvander S, Nitschke KN (2008) Dose reduction from loss of backscatter in superficial X-ray radiation therapy with the Pantak SXT 150 unit. Australas Phys Eng Sci Med 31(1):49–55PubMedGoogle Scholar
  110. 110.
    Hill R, Kuncic Z, Baldock C (2010) The water equivalence of solid phantoms for low energy photon beams. Med Phys 37(8):4355–4363PubMedGoogle Scholar
  111. 111.
    Klevenhagen SC (1982) The build-up of backscatter in the energy range 1 mm Al to 8 mm Al HVT (radiotherapy beams). Phys Med Biol 27(8):1035–1043Google Scholar
  112. 112.
    Klevenhagen SC, Aukett RJ, Burns JE, Harrison RM, Knight RT, Nahum AE, Rosser KE (1991) Memorandum from the Institute of Physical Sciences in Medicine. Back-scatter and F-factors for low- and medium-energy X-ray beams in radiotherapy. Brit J Radiol 64(765):836–841PubMedGoogle Scholar
  113. 113.
    Patrocinio HJ, Bissonnette JP, Bussière MR, Schreiner LJ (1996) Limiting values of backscatter factors for low-energy X-ray beams. Phys Med Biol 41(2):239PubMedGoogle Scholar
  114. 114.
    Butson MJ, Cheung T, Yu PKN (2007) Radiochromic film for verification of superficial X-ray backscatter factors. Australas Phys Eng Sci Med 30(4):269–273PubMedGoogle Scholar
  115. 115.
    Kim J, Hill R, Claridge MacKonis E, Kuncic Z (2010) An investigation of backscatter factors for kilovoltage X-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements. Phys Med Biol 55(3):783–797PubMedGoogle Scholar
  116. 116.
    Smith L, Hill R, Nakano M, Kim J, Kuncic Z (2011) The measurement of backscatter factors of kilovoltage X-ray beams using Gafchromic EBT2 film. Australas Phys Eng Sci Med 34(2):261–266PubMedGoogle Scholar
  117. 117.
    Coudin D, Marinello G (1998) Lithium borate TLD for determining the backscatter factors for low- energy X rays: comparison with chamber-based and Monte Carlo derived values. Med Phys 25(3):347–353PubMedGoogle Scholar
  118. 118.
    Harrison RM, Walker C, Aukett RJ (1990) Measurement of backscatter factors for low energy radiotherapy (0.1–2.0 mm Al HVL) using thermoluminescence dosimetry. Phys Med Biol 35(9):1247PubMedGoogle Scholar
  119. 119.
    Li XA, Ma CM, Salhani D (1997) Measurement of percentage depth dose and lateral beam profile for kilovoltage X-ray therapy beams. Phys Med Biol 42(12):2561–2568PubMedGoogle Scholar
  120. 120.
    Gerig L, Soubra M, Salhani D (1994) Beam characteristics of the Therapax DXT300 orthovoltage therapy unit. Phys Med Biol 39(9):1377–1392PubMedGoogle Scholar
  121. 121.
    Knoos T, Rosenschold PMA, Wieslander E (2007) Modelling of an orthovoltage X-ray therapy unit with the EGSnrc Monte Carlo package. J Phys Conf Ser 74:021009Google Scholar
  122. 122.
    di Sopra FM, Keall P, Beckham W (1999) An analytical model of a kilovoltage beam phase space. Med Phys 26(9):2000–2006PubMedGoogle Scholar
  123. 123.
    Butson MJ, Cheung T, Yu PKN, Alnawaf H (2009) Dose and absorption spectra response of EBT2 Gafchromic film to high energy X-rays. Australas Phys Eng Sci Med 32(4):196–202PubMedGoogle Scholar
  124. 124.
    Devic S, Seuntjens J, Hegyi G, Podgorsak EB, Soares CG, Kirov AS, Ali I, Williamson JF, Elizondo A (2004) Dosimetric properties of improved GafChromic films for seven different digitizers. Med Phys 31(9):2392–2401PubMedGoogle Scholar
  125. 125.
    Devic S, Seuntjens J, Sham E, Podgorsak EB, Schmidtlein CR, Kirov AS, Soares CG (2005) Precise radiochromic film dosimetry using a flat-bed document scanner. Med Phys 32(7):2245–2253PubMedGoogle Scholar
  126. 126.
    Morales JE, Butson M, Crowe SB, Hill R, Trapp J (2016) An experimental extrapolation technique using the Gafchromic EBT3 film for relative output factor measurements in small X-ray fields. Med Phys 43(8):4687–4692PubMedGoogle Scholar
  127. 127.
    Reinhardt S, Hillbrand M, Wilkens JJ, Assmann W (2012) Comparison of Gafchromic EBT2 and EBT3 films for clinical photon and proton beams. Med Phys 39(8):5257–5262PubMedGoogle Scholar
  128. 128.
    Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley K, Oldham M, Schreiner L (2010) Polymer gel dosimetry. Phys Med Biol 55(5):R1PubMedPubMedCentralGoogle Scholar
  129. 129.
    De Deene Y, Venning A, Hurley C, Healy B, Baldock C (2002) Dose? Response stability and integrity of the dose distribution of various polymer gel dosimeters. Phys Med Biol 47(14):2459PubMedGoogle Scholar
  130. 130.
    Trapp J, Michael G, De Deene Y, Baldock C (2002) Attenuation of diagnostic energy photons by polymer gel dosimeters. Phys Med Biol 47(23):4247PubMedGoogle Scholar
  131. 131.
    De Deene Y, Baldock C (2002) Optimization of multiple spin–echo sequences for 3D polymer gel dosimetry. Phys Med Biol 47(17):3117PubMedGoogle Scholar
  132. 132.
    Gorjiara T, Hill R, Kuncic Z, Adamovics J, Bosi S, Kim J, Baldock C (2011) Investigation of radiological properties and water equivalency of PRESAGE® dosimeters. Med Phys 38(4):2265–2274PubMedGoogle Scholar
  133. 133.
    Gorjiara T, Hill R, Kuncic Z, Bosi S, Baldock C (2010) An evaluation of Genipin gel as a water equivalent dosimeter for megavoltage electron beams and kilovoltage X-ray beams. J Phys: Conf Ser 250:164–168Google Scholar
  134. 134.
    Gorjiara T, Hill R, Kuncic Z, Bosi S, Davies J, Baldock C (2011) Radiological characterization and water equivalency of genipin gel for X-ray and electron beam dosimetry. Phys Med Biol 56(15):4685PubMedGoogle Scholar
  135. 135.
    Keall P, Baldock C (1999) A theoretical study of the radiological properties and water equivalence of Fricke and polymer gels used for radiation dosimetry. Australas Phys Eng Sci Med 22(3):85–91PubMedGoogle Scholar
  136. 136.
    Allahverdi M, Nisbet A, Thwaites DI (1999) An evaluation of epoxy resin phantom materials for megavoltage photon dosimetry. Phys Med Biol 44(5):1125–1132PubMedGoogle Scholar
  137. 137.
    Christ G (1995) White polystyrene as a substitute for water in high energy photon dosimetry. Med Phys 22(12):2097–2100PubMedGoogle Scholar
  138. 138.
    McEwen MR, Niven D (2006) Characterization of the phantom material virtual water in high-energy photon and electron beams. Med Phys 33(4):876–887PubMedGoogle Scholar
  139. 139.
    White DR (1978) Tissue substitutes in experimental radiation physics. Med Phys 5(6):467–479PubMedGoogle Scholar
  140. 140.
    Ramaseshan R, Kohli K, Cao F, Heaton R (2008) Dosimetric evaluation of plastic water diagnostic therapy. J Appl Clin Med Phys 9(2):98–111PubMedCentralGoogle Scholar
  141. 141.
    Hermann KP, Geworski L, Muth M, Harder D (1985) Polyethylene-based water-equivalent phantom material for X-ray dosimetry at tube voltages from 10 to 100 kV. Phys Med Biol 30(11):1195–1200PubMedGoogle Scholar
  142. 142.
    Reniers B, Verhaegen F, Vynckier S (2004) The radial dose function of low-energy brachytherapy seeds in different solid phantoms: comparison between calculations with the EGSnrc and MCNP4C Monte Carlo codes and measurements. Phys Med Biol 49(8):1569–1582PubMedGoogle Scholar
  143. 143.
    Meigooni AS, Li Z, Mishra V, Williamson JF (1994) A comparative study of dosimetric properties of plastic water and solid water in brachytherapy applications. Med Phys 21(12):1983–1987PubMedGoogle Scholar
  144. 144.
    Hill RF, Brown S, Baldock C (2008) Evaluation of the water equivalence of solid phantoms using gamma ray transmission measurements. Radiat Meas 43(7):1258–1264Google Scholar
  145. 145.
    Li XA, Ma CM, Salhani D (1999) Relative dosimetry measurement for kilovoltage X-ray units. In: Ma CM, Seuntjens JP (eds) Kilovoltage X-ray beam dosimetry for radiotherapy and radiobiology. Medical Physics Publishing, Madison, pp 213–226Google Scholar
  146. 146.
    Schauer DA, Cassata JR, King JJ (2000) A comparison of measured and calculated photon backscatter from dosemeter calibration phantoms. Radiat Prot Dosim 88(4):319–321Google Scholar
  147. 147.
    Schwahn SO, Gesell TF (2008) Variations in backscatter observed in PMMA whole-body dosimetry slab phantoms. Radiat Prot Dosim 128(3):375–381Google Scholar
  148. 148.
    Traub RJ, McDonald JC, Murphy MK (1997) Determination of photon backscatter from several calibration phantoms. Radiat Prot Dosim 74(1–2):13–20Google Scholar
  149. 149.
    Kron T, Duggan L, Smith T, Rosenfeld A, Butson M, Kaplan G, Howlett S, Hyodo K (1998) Dose response of various radiation detectors to synchrotron radiation. Phys Med Biol 43(11):3235–3259PubMedGoogle Scholar
  150. 150.
    Mobit P, Agyingi E, Sandison G (2006) Comparison of the energy-response factor of LiF and Al2O3 in radiotherapy beams. Radiat Prot Dosim 119(1–4):497–499Google Scholar
  151. 151.
    Nelson VK, McLean ID, Holloway L (2008) Use of thermoluminescent dosimetry (TLD) for quality assurance of orthovoltage X-ray therapy machines. Radiat Meas 43(2–6):908–911Google Scholar
  152. 152.
    Kron T, Smith A, Hyodo K (1996) Synchrotron radiation in the study of the variation of dose response in thermoluminescence dosimeters with radiation energy. Australas Phys Eng Sci Med 19(4):225–236PubMedGoogle Scholar
  153. 153.
    Butson MJ, Cheung T, Yu PK, Price S, Bailey M (2008) Measurement of radiotherapy superficial X-ray dose under eye shields with radiochromic film. Phys Med 24(1):29–33PubMedGoogle Scholar
  154. 154.
    Richley L, John AC, Coomber H, Fletcher S (2010) Evaluation and optimization of the new EBT2 radiochromic film dosimetry system for patient dose verification in radiotherapy. Phys Med Biol 55(9):2601–2617PubMedGoogle Scholar
  155. 155.
    Eaton DJ (2012) Quality assurance and independent dosimetry for an intraoperative X-ray device. Med Phys 39(11):6908–6920PubMedGoogle Scholar
  156. 156.
    Eduardo Villarreal-Barajas J, Khan RFH (2014) Energy response of EBT3 radiochromic films: implications for dosimetry in kilovoltage range. J Appl Clin Med Phys 15(1):331–338PubMedCentralGoogle Scholar
  157. 157.
    Hammer CG, Rosen BS, Fagerstrom JM, Culberson WS, DeWerd LA (2018) Experimental investigation of Gafchromic® Ebt3 intrinsic energy dependence with kilovoltage X rays, 137cs, and 60co. Med Phys 45(1):448–459PubMedGoogle Scholar
  158. 158.
    Cheung T, Butson MJ, Yu PK (2003) MOSFET dosimetry in-vivo at superficial and orthovoltage X-ray energies. Australas Phys Eng Sci Med 26(2):82–84PubMedGoogle Scholar
  159. 159.
    Cheung T, Yu PKN, Butson MJ (2005) Low-dose measurement with a MOSFET in high-energy radiotherapy applications. Radiat Meas 39(1):91–94Google Scholar
  160. 160.
    Lian CPL, Othman MAR, Cutajar D, Butson M, Guatelli S, Rosenfeld AB (2011) Monte Carlo study of the energy response and depth dose water equivalence of the MOSkin radiation dosimeter at clinical kilovoltage photon energies. Australas Phys Eng Sci Med 34(2):273–279PubMedGoogle Scholar
  161. 161.
    Akselrod MS, Bøtter-Jensen L, McKeever SWS (2006) Optically stimulated luminescence and its use in medical dosimetry. Radiat Meas 41(Supplement 1):S78–S99Google Scholar
  162. 162.
    Reft CS (2009) The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams. Med Phys 36(5):1690–1699. CrossRefPubMedGoogle Scholar
  163. 163.
    Guerda Massillon JL, Iván Domingo M-M, Porfirio D-A (2016) Optimum absorbed dose versus energy response of Gafchromic EBT2 and EBT3 films exposed to 20–160 kV X-rays and 60 Co gamma. Biomed Phys Eng Expr 2(4):045005Google Scholar
  164. 164.
    Mart CJ, Elson HR, Lamba MAS (2012) Measurement of low-energy backscatter factors using GAFCHROMIC film and OSLDs. J Appl Clin Med Phys 13(6):126–133PubMedCentralGoogle Scholar
  165. 165.
    Lessard F, Archambault L, Plamondon M, Després P, Therriault-Proulx F, Beddar S, Beaulieu L (2012) Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range. Med Phys 39(9):5308–5316PubMedPubMedCentralGoogle Scholar
  166. 166.
    Hill RF, Tofts PS, Baldock C (2010) The Bland–Altman analysis: does it have a role in assessing radiation dosimeter performance relative to an established standard? Radiat Meas 45(7):810–815Google Scholar
  167. 167.
    Li XA, Salhani D, Ma CM (1997) Characteristics of orthovoltage X-ray therapy beams at extended SSD for applicators with end plates. Phys Med Biol 42(2):357–370PubMedGoogle Scholar
  168. 168.
    Van Dyk J (1999) Radiation oncology overview. In: Van Dyk J (ed) The modern technology of radiation oncology. Medical Physics Publishing, Madison, WisconsinGoogle Scholar
  169. 169.
    Alaei P, Gerbi BJ, Geise RA (2000) Evaluation of a model-based treatment planning system for dose computations in the kilovoltage energy range. Med Phys 27(12):2821–2826PubMedGoogle Scholar
  170. 170.
    Ding GX, Duggan DM, Coffey CW (2008) Accurate patient dosimetry of kilovoltage cone-beam CT in radiation therapy. Med Phys 35(3):1135–1144PubMedGoogle Scholar
  171. 171.
    Ding GX, Pawlowski JM, Coffey CW (2008) A correction-based dose calculation algorithm for kilovoltage X rays. Med Phys 35(12):5312–5316PubMedGoogle Scholar
  172. 172.
    Gao W, Raeside DE (1997) Orthovoltage radiation therapy treatment planning using Monte Carlo simulation: treatment of neuroendocrine carcinoma of the maxillary sinus. Phys Med Biol 42(12):2421–2433PubMedGoogle Scholar
  173. 173.
    Lee CHM, Chan KKD (2000) Electron contamination from the lead cutout used in kilovoltage radiotherapy. Phys Med Biol 45(1):1–8PubMedGoogle Scholar
  174. 174.
    Das IJ, Chopra KL (1995) Backscatter dose perturbation in kilovoltage photon beams at high atomic number interfaces. Med Phys 22(6):767–773PubMedGoogle Scholar
  175. 175.
    Eaton DJ, Doolan PJ (2013) Review of backscatter measurement in kilovoltage radiotherapy using novel detectors and reduction: from lack of underlying scattering material. J Appl Clin Med Phys 14(6):5–17PubMedCentralGoogle Scholar
  176. 176.
    Hill R, Healy B, Holloway L, Baldock C (2007) An investigation of dose changes for therapeutic kilovoltage X-ray beams with underlying lead shielding. Med Phys 34(7):3045–3053PubMedGoogle Scholar
  177. 177.
    Huq MS, Venkataramanan N, Meli JA (1992) The effect on dose of kilovoltage X-rays backscattered from lead. Int J Radiat Oncol Biol Phys 24(1):171–175PubMedGoogle Scholar
  178. 178.
    Lanzon PJ, Sorell GC (1993) The effect of lead underlying water on the backscatter of X-rays of beam qualities 0.5 mm to 8 mm Al HVT. Phys Med Biol 38(8):1137–1144Google Scholar
  179. 179.
    Das IJ (1997) Forward dose perturbation at high atomic number interfaces in kilovoltage X-ray beams. Med Phys 24(11):1781–1787PubMedGoogle Scholar
  180. 180.
    Mitchell G, Kron T, Back M (1998) High dose behind inhomogeneities during medium-energy X-ray irradiation. Phys Med Biol 43(5):1343–1350PubMedGoogle Scholar
  181. 181.
    Currie BE (2009) Determining superficial dosimetry for the internal canthus from the Monte Carlo simulation of kV photon and MeV electron beams. Australas Phys Eng Sci Med 32(2):68–80PubMedGoogle Scholar
  182. 182.
    Baker CR, Luhana F, Thomas SJ (2002) Absorbed dose behind eye shields during kilovoltage photon radiotherapy. Brit J Radiol 75(896):685–688PubMedGoogle Scholar
  183. 183.
    Gordon KB, Char DH, Sagerman RH (1995) Late effects of radiation on the eye and ocular adnexa. Int J Radiat Oncol Biol Phys 31(5):1123–1139PubMedGoogle Scholar
  184. 184.
    Wang D, Sobolewski M, Hill R (2012) The dosimetry of eye shields for kilovoltage X-ray beams. Australas Phys Eng Sci Med 35(4):491–495. CrossRefPubMedGoogle Scholar
  185. 185.
    Kron T, Dwyer M, Smith L, MacDonald A, Pawsey M, Raik E, Arnold A, Hill B, Duchesne G (2015) The development of practice standards for radiation oncology in Australia: a tripartite approach. Clin Oncol 27(6):325–329Google Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2018

Authors and Affiliations

  • Robin Hill
    • 1
    • 2
    Email author
  • Brendan Healy
    • 3
  • Duncan Butler
    • 4
  • David Odgers
    • 1
  • Simran Gill
    • 1
  • Jessica Lye
    • 4
  • Tina Gorjiara
    • 1
  • Dane Pope
    • 1
  • Brendan Hill
    • 5
  1. 1.Department of Radiation OncologyChris O’Brien LifehouseCamperdownAustralia
  2. 2.Institute of Medical Physics, School of PhysicsUniversity of SydneySydneyAustralia
  3. 3.Dosimetry and Medical Radiation Physics SectionInternational Atomic Energy AgencyViennaAustria
  4. 4.Australian Radiation Protection and Nuclear Safety AgencyYallambieAustralia
  5. 5.Genesis Cancer Care QueenslandSouthportAustralia

Personalised recommendations