Power density measurements to optimize AC plasma jet operation in blood coagulation

  • Kamal M. Ahmed
  • Shaimaa M. Eldeighdye
  • Tarek M. Allam
  • Walaa F. Hassanin
Scientific Paper


In this paper, the plasma power density and corresponding plasma dose of a low-cost air non-thermal plasma jet (ANPJ) device are estimated at different axial distances from the nozzle. This estimation is achieved by measuring the voltage and current at the substrate using diagnostic techniques that can be easily made in laboratory; thin wire and dielectric probe, respectively. This device uses a compressed air as input gas instead of the relatively-expensive, large-sized and heavy weighed tanks of Ar or He gases. The calculated plasma dose is found to be very low and allows the presented device to be used in biomedical applications (especially blood coagulation). While plasma active species and charged-particles are found to be the most effective on blood coagulation formation, both air flow and UV, individually, do not have any effect. Moreover, optimal conditions for accelerating blood coagulation are studied. Results showed that, the power density at the substrate is shown to be decreased with increasing the distance from the nozzle. In addition, both distances from nozzle and air flow rate play an important role in accelerating blood coagulation process. Finally, this device is efficient, small-sized, safe enough, of low cost and, hence, has its chances to be wide spread as a first aid and in ambulance.


ANPJ Power density Plasma dose Coagulation time Plasma treatment 


Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Iza F, Kim GJ, Lee SM, Lee JK, Walsh JL, Zhang JL, Kong YT MG (2008) Microplasmas: sources, particle kinetics, and biomedical applications. Plasma Process Polym 5(4):322–344. CrossRefGoogle Scholar
  2. 2.
    Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B 61(1):2–30. CrossRefGoogle Scholar
  3. 3.
    Fridman G, Peddinghaus M, Balasubramanian M, Ayan H, Fridman A, Gutsol A, Brooks A (2006) Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process 26(4):425–442. CrossRefGoogle Scholar
  4. 4.
    Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G (2007) Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma Process 27(2):163–176. CrossRefGoogle Scholar
  5. 5.
    Kieft IE, Kurdi M, Stoffels E (2006) Reattachment and apoptosis after plasma-needle treatment of cultured cells. IEEE Trans Plasma Sci 34(4):1331–1336. CrossRefGoogle Scholar
  6. 6.
    Stoffels E, Kieft IE, Sladek-Adamowicz REJ (2003) Superficial treatment of mammalian cells using plasma needle. J Phys D 36(23):2908–2913. CrossRefGoogle Scholar
  7. 7.
    Kieft IE, Darios D, Roks A, Stoffels AJM E (2005) Plasma treatment of mammalian vascular cells: a quantitative description. IEEE Trans Plasma Sci 33(2):771–775. CrossRefGoogle Scholar
  8. 8.
    Stoffels E, Kieft IE, Sladek-Adamowicz REJ (2004) Gas plasma effects on living cells. Phys Scr T107:79–82. CrossRefGoogle Scholar
  9. 9.
    Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K (2016) Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys Rep 630:1–84. CrossRefGoogle Scholar
  10. 10.
    Laroussi M (1996) Sterilization of contaminated matter with an atmosphere pressure plasma. IEEE Trans Plasma Sci 24(3):1188–1191. CrossRefGoogle Scholar
  11. 11.
    Herrmann HW, Henins I, Park J, Selwyn GS (1999) Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ). Phys Plasmas 6(5):2284–2289. CrossRefGoogle Scholar
  12. 12.
    Lai W, Lai H, Kuo SP, Tarasenko O, Levon K (2005) Decontamination of biological warfare agents by a microwave plasma torch. Phys Plasmas 12(2):023501. CrossRefGoogle Scholar
  13. 13.
    Baxter HC, Campbell GA, Whittaker AG, Aitken A, Simpson AH, Casey M, Jones AC, Bountiff L, Gibbard L, Baxter R (2005) Elimination of transmissible spongiform encephalopathy infectivity and decontamination of surgical instruments by using radio-frequency gas-plasma treatment. J Gen Virol 86(8):2393–2399. CrossRefPubMedGoogle Scholar
  14. 14.
    Tarasenko O, Nourkbash S, Kuo SP, Bakhtina A, Alusta P, Kudasheva D, Cowman M, Levon K (2006) Scanning electron and atomic force microscopy to study plasma torch effects on B. cereus spores. IEEE Trans Plasma Sci 34(1):1281–1289. CrossRefGoogle Scholar
  15. 15.
    Kalghatgi SU, Fridman G, Cooper M, Nagaraj G, Peddinghaus M, Balasubramanian M, Vasilets VN, Gutsol AF, Fridman A, Friedman G (2007) Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma. IEEE Trans Plasma Sci 35(5):1559–1566. CrossRefGoogle Scholar
  16. 16.
    Kuo SP, Tarasenko O, Popovic S, Levon K (2006) Killing of bacterial spores contained in a paper envelope by a microwave plasma torch. IEEE Trans Plasma Sci 34(4):1275–1280. CrossRefGoogle Scholar
  17. 17.
    Kuo SP, Tarasenko O, Chang J, Popovic S, Chen C, Fan H, Scott A, Lahiani M, Alusta P, Drake J, Nikolic M (2009) Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding. New J Phys 11:115016. CrossRefGoogle Scholar
  18. 18.
    Furie B, Furie BC (2005) Thrombus formation in vivo. J Clin Invest 115(12):3355–3362. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Process Polym 5(6):503–533. CrossRefGoogle Scholar
  20. 20.
    Shekhter AB, Serezhenkov VA, Rudenko TG, Pekshev AV, Vanin AF (2005) Beneficial effect of gaseous nitric oxide on the healing of skin wounds. Nitric Oxide 12(4):210–219. CrossRefPubMedGoogle Scholar
  21. 21.
    Lu X, Zou F (2011) On the mechanism of plasma inducing cell apoptosis. In: Abstracts IEEE international conference on plasma science (ICOPS), Chicago, Illinois, USA, 26–30 June.
  22. 22.
    Hoffmann M, Ulrich A, Schloericke E, Limmer S, Habermann JK, Wolken H, Bruch H-P, Kujath P (2012) The application of cold-plasma coagulation on the visceral pleura results in a predictable depth of necrosis without fistula generation. Interact Cardiovasc Thorac Surg 14(3):239–243. CrossRefPubMedGoogle Scholar
  23. 23.
    Dobrynin D, Wu A, Kalghatgi S, Park S, Shainsky N, Wasko K, Dumani E, Ownbey R, Joshi S, Sensenig R, Brooks AD (2011) Live pig skin tissue and wound toxicity of cold plasma treatment. Plasma Med 1(1):93–108. CrossRefGoogle Scholar
  24. 24.
    Wu AS et al (2013) Porcine intact and wounded skin responses to atmospheric nonthermal plasma. J Surg Res 179(1):e1–e12. CrossRefPubMedGoogle Scholar
  25. 25.
    Weltmann K-D, Brandenburg R, von Woedtke T, Ehlbeck J, Foest R, Stieber M, Kindel E (2008) Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). J Phys D 41(19):194008. CrossRefGoogle Scholar
  26. 26.
    Xiong Q, Lu P, Ostrikov K, Xian Y, Zou C, Xiong Z, Pan Y (2010) Pulsed dc- and sin e-wave-excited cold atmospheric plasma plumes: a comparative analysis. Phys Plasmas 17:043506. CrossRefGoogle Scholar
  27. 27.
    Aleinik A, Baikov A, Dambaev G, Semichev E, Bushlanov P (2017) Liver hemostasis by using cold plasma. Surg Innov 24:253. CrossRefPubMedGoogle Scholar
  28. 28.
    Heslin C, Boehm D, Milosavljevic V, Laycock M, Cullen P, Bourke P (2014) Quantitative assessment of blood coagulation by cold atmospheric plasma. Plasma Med 4:153. CrossRefGoogle Scholar
  29. 29.
    Janani E et al (2017) Blood coagulation by low energy plasma jet. In: ISPC 20, 20th international symposium on plasma chemistry, Philadelphia, USA, 24–29 July 2011Google Scholar
  30. 30.
    Miyamoto K, Ikehara S, Sakakita H, Ikehara Y (2017) Low temperature plasma equipment applied on surgical hemostasis and wound healings. J Clin Biochem Nutr 60:25–28. CrossRefPubMedGoogle Scholar
  31. 31.
    Ahmed KM, Allam TM, Elsayed HA, Soliman HM, Ward SA, Saied EM (2014) Design, construction and characterization of ac atmospheric pressure air non-thermal plasma jet. J Fusion Energ 33(6):627–633. CrossRefGoogle Scholar
  32. 32.
    Allam TM, Ward SA, Elsayed HA, Saied EM, Soliman HM, Ahmed KM (2014) Electrical parameters investigation and zero flow rate effect of nitrogen atmospheric nonthermal plasma jet. Energy Power Eng 6:437–448. CrossRefGoogle Scholar
  33. 33.
    Xiong Z, Lu X, Xiong Q, Xian Y, Zou C, Hu J, Gong W, Liu J, Zou F, Jiang Z, Pan Y (2010) Measurements of the propagation velocity of an atmospheric-pressure plasma plume by various methods. IEEE Trans Plasma Sci 38(4):1001–1007. CrossRefGoogle Scholar
  34. 34.
    Begum A, Laroussi M, Pervez MR (2011) Dielectric probe: a new electrical diagnostic tool for atmospheric pressure non-thermal plasma jet. Int J Eng Technol 11(3):209–215Google Scholar
  35. 35.
    Walsh JL, Shi JJ, Kong MG (2006) Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets. Appl Phys Lett 88(17):171501. CrossRefGoogle Scholar
  36. 36.
    Say MG, Laughton MA (2003) Network analysis. In: Electrical engineer’s reference book, 16th edn. Newnes, Oxford, pp 3-1, 3-3-3-44, ISBN 9780750646376,
  37. 37.
    Krikstolaityte V et al (2013) Biofuel cell based on anode and cathode modified by glucose oxidase. Electroanalysis 25(12):2677–2683. CrossRefGoogle Scholar
  38. 38.
    Ahmed KM (2014) Design and experimental investigations of electrical breakdown in a plasma jet device and applications, PhD thesis, Faculty of Engineering at Shoubra, Benha university, CairoGoogle Scholar
  39. 39.
    Greer JP, Foerster J, Lukens JN, Rodgers GM, Paraskevas F (2003) Wintrobe’s clinical hematology, 11th edn. Lippincott Williams & Wilkins, New YorkGoogle Scholar
  40. 40.
    Norberg SA, Johnsen E, Kushner MJ (2015) Formation of reactive oxygen and nitrogen species by repetitive negatively pulsed helium atmospheric pressure plasma jets propagating into humid air. Plasma Sources Sci Technol 24:035026. CrossRefGoogle Scholar
  41. 41.
    Fathollah S, Mirpour S, Mansouri P, Dehpour AR, Ghoranneviss M, Rahimi N, Naraghi ZS, Chalangari R, Chalangari KM (2016) Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats. Sci Rep 6:19144. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    McCord JM, Fridovich I (1969) Soperoxide dismutase: an enzyme function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055PubMedGoogle Scholar
  43. 43.
    Kuo SP (2012) Air plasma for medical applications. J Biomed Sci Eng 5(9):481–495. CrossRefGoogle Scholar
  44. 44.
    Mohamed AA, Kolb J, Schoenbach K (2010) Low temperature, atmospheric pressure, direct current microplasma jet operated in air, nitrogen and oxygen. Eur Phys J D 60(3):517–522. CrossRefGoogle Scholar
  45. 45.
    Novopashin S, Muriel A (2002) Is the critical Reynolds number universal? J Exp Theor Phys 95(2):262–265. CrossRefGoogle Scholar
  46. 46.
    Stoffels E, Kieft IE, Sladek REJ, van den Bedem LJ, van der Laan EP, Steinbuch M (2006) Plasma needle for in vivo medical treatment: recent developments and perspectives. Plasma Sources Sci Technol 15(4):S169–S180. CrossRefGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2018

Authors and Affiliations

  1. 1.Plasma and Nuclear Fusion Department, Nuclear Research Center (NRC)Atomic Energy Authority (AEA)CairoEgypt
  2. 2.Biological Applications Department, NRCAEACairoEgypt

Personalised recommendations