Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue

Scientific Paper

Abstract

The objective of this work is to study the dosimetric performances of bismuth oxide nanoparticles implanted in tumors in cancer radiotherapy. GEANT4 based Monte Carlo numerical simulations were performed to assess dose enhancement distributions in and around a 1 × 1 × 1 cm3 tumor implanted with different concentrations of bismuth oxide and irradiated with low energies 125I, 131Cs, and 103Pd radioactive sources. Dose contributions were considered from photoelectrons, Auger electrons, and characteristic X-rays. Our results show the dose enhancement increased with increasing both bismuth oxide concentration in the target and photon energy. A dose enhancement factor up to 18.55 was obtained for a concentration of 70 mg/g of bismuth oxide in the tumor when irradiated with 131Cs source. This study showed that bismuth oxide nanoparticles are innovative agents that could be potentially applicable to in vivo cancer radiotherapy due to the fact that they induce a highly localized energy deposition within the tumor.

Keywords

Gamma-ray Bismuth Nanoparticles Dose enhancement 

Notes

Compliance with ethical standards

Conflict of interest

All authors declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386.  https://doi.org/10.1002/ijc.29210 CrossRefPubMedGoogle Scholar
  2. 2.
    Babaei M, Ganjalikhani M (2014) The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy. Bioimpacts 4:15–20.  https://doi.org/10.5681/bi.2014.003 PubMedPubMedCentralGoogle Scholar
  3. 3.
    Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651.  https://doi.org/10.1016/S0169-409X(02)00044-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–243.  https://doi.org/10.1016/j.nantod.2014.04.008 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA (2012) Nanotechnology-based approaches in anticancer research. Int J Nanomed.  https://doi.org/10.2147/IJN.S33838 Google Scholar
  6. 6.
    Rivolta I, Panariti M (2012) The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions?. Nanotechnol Sci Appl.  https://doi.org/10.2147/NSA.S25515 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Jones BL, Krishnan S, Cho SH (2010) Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med Phys 37:3809–3816.  https://doi.org/10.1118/1.3455703 CrossRefPubMedGoogle Scholar
  8. 8.
    Roeske JC, Nuñez L, Hoggarth M, Labay E, Weichselbaum RR (2007) Characterization of the theorectical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat 6:395–401.  https://doi.org/10.1177/153303460700600504 CrossRefPubMedGoogle Scholar
  9. 9.
    Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315CrossRefPubMedGoogle Scholar
  10. 10.
    Banoqitah E, Djouider F (2016) Dose distribution and dose enhancement by using gadolinium nanoparticles implant in brain tumor in stereotactic brachytherapy. Radiat Phys Chem 127:68–71.  https://doi.org/10.1016/j.radphyschem.2016.06.002 CrossRefGoogle Scholar
  11. 11.
    Ghorbani M, Bakhshabadi M, Golshan A, Knaup C (2013) Dose enhancement by various nanoparticles in prostate brachytherapy. Australas Phys Eng Sci Med 36:431–440.  https://doi.org/10.1007/s13246-013-0231-z CrossRefPubMedGoogle Scholar
  12. 12.
    Sinha N, Cifter G, Sajo E, Kumar R, Sridhar S, Nguyen PL et al (2015) Brachytherapy application with in situ dose painting administered by gold nanoparticle eluters. Int J Radiat Oncol 91:385–392.  https://doi.org/10.1016/j.ijrobp.2014.10.001 CrossRefGoogle Scholar
  13. 13.
    Podgorsak EB (2010) Radiation physics for medical physicists. Springer, BerlinCrossRefGoogle Scholar
  14. 14.
    Montenegro M, Nahar SN, Pradhan AK, Huang K, Yu Y (2009) Monte Carlo simulations and atomic calculations for auger processes in biomedical nanotheranostics? J Phys Chem A 113:12364–12369.  https://doi.org/10.1021/jp905323y CrossRefPubMedGoogle Scholar
  15. 15.
    Alqathami M, Blencowe A, Geso M, Ibbott G (2016) Quantitative 3D determination of radiosensitization by bismuth-based nanoparticles. J Biomed Nanotechnol 12:464–471.  https://doi.org/10.1166/jbn.2016.2183 CrossRefPubMedGoogle Scholar
  16. 16.
    Alqathami M, Blencowe A, Yeo UJ, Franich R, Doran S, Qiao G et al (2013) Enhancement of radiation effects by bismuth oxide nanoparticles for kilovoltage X-ray beams: a dosimetric study using a novel multi-compartment 3D radiochromic dosimeter. J Phys 444:12025.  https://doi.org/10.1088/1742-6596/444/1/012025 Google Scholar
  17. 17.
    Zhang X-W, Xia J, Yan H-W, Luo S-L, Yin S-F, Au C-T et al (2009) Synthesis, structure, and in vitro antiproliferative activity of cyclic hypervalent organobismuth(III) chlorides and their triphenylgermylpropionate derivatives. J Organomet Chem 694:3019–3026.  https://doi.org/10.1016/j.jorganchem.2009.05.003 CrossRefGoogle Scholar
  18. 18.
    Brown AL, Goforth AM (2012) pH-dependent synthesis and stability of aqueous, elemental bismuth glyconanoparticle colloids: potentially biocompatible X-ray contrast agents. Chem Mater 24:1599–1605.  https://doi.org/10.1021/cm300083j CrossRefGoogle Scholar
  19. 19.
    Fang J, Stokes KL, Wiemann JA, Zhou WL, Dai J, Chen F et al (2001) Microemulsion-processed bismuth nanoparticles. Mater Sci Eng B 83:254–257.  https://doi.org/10.1016/S0921-5107(01)00528-1 CrossRefGoogle Scholar
  20. 20.
    Spafford MJ, Christensen JE, Huddle MG, Lacey JR, Mohan RS (2008) Environmentally friendly organic synthesis using bismuth compounds: bismuth trifluoromethanesulfonate-catalyzed allylation of dioxolanes. Aust J Chem 61:419.  https://doi.org/10.1071/CH08109 CrossRefGoogle Scholar
  21. 21.
    Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122.  https://doi.org/10.1038/nmat1571 CrossRefPubMedGoogle Scholar
  22. 22.
    Slikkerveer A, de Wolff FA (1989) Pharmacokinetics and toxicity of bismuth compounds. Med Toxicol Advers Drug Exp 4:303–323CrossRefGoogle Scholar
  23. 23.
    Stewart C, Konstantinov K, Mckinnon S, Guatelli S, Lerch M, Rosenfeld A et al (2016) Physica medica first proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Phys Med 32:1444–1452.  https://doi.org/10.1016/j.ejmp.2016.10.015 CrossRefPubMedGoogle Scholar
  24. 24.
    Maigne L, Perrot Y, Schaart DR, Donnarieix D, Breton V (2011) Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV. Phys Med Biol 56:811–827.  https://doi.org/10.1088/0031-9155/56/3/017 CrossRefPubMedGoogle Scholar
  25. 25.
    Grevillot L, Bertrand D, Dessy F, Freud N, Sarrut D (2011) A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4. Phys Med Biol 56:5203–5219.  https://doi.org/10.1088/0031-9155/56/16/008 CrossRefPubMedGoogle Scholar
  26. 26.
    Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D et al (2004) GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 49:4543–4561.  https://doi.org/10.1088/0031-9155/49/19/007 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P et al (2011) GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol 56:881–901.  https://doi.org/10.1088/0031-9155/56/4/001 CrossRefPubMedGoogle Scholar
  28. 28.
    Attix FH (1984) Energy-absorption coefficients for γ-rays in compounds or mixtures. Phys Med Biol 29:869CrossRefGoogle Scholar
  29. 29.
    Berger RT (1961) The X- or gamma-ray energy absorption or transfer coefficient: tabulations and discussion. Radiat Res 15:1–29.  https://doi.org/10.2307/3571063 CrossRefGoogle Scholar
  30. 30.
    White DR, Griffith RV, Wilson IJ (1992) Report 46. J Int Comm Radiat Units Meas.  https://doi.org/10.1093/jicru/os24.1.Report46 Google Scholar
  31. 31.
    Yoon M, Cho S, Jeong JH, Kim CH (2010) Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy. J Korean Phys Soc 56:1754–1758.  https://doi.org/10.3938/jkps.56.1754 CrossRefGoogle Scholar
  32. 32.
    Sharabiani M, Asadi S, Barghi AR, Vaezzadeh M (2017) Comparison of parameters affecting GNP-loaded choroidal melanoma dosimetry; Monte Carlo study. Radiat Phys Chem.  https://doi.org/10.1016/j.radphyschem.2017.10.021 Google Scholar
  33. 33.
    Zabihzadeh M, Arefian S (2015) Tumor dose enhancement by nanoparticles during high dose rate 192 Ir brachytherapy. J Cancer Res Ther 11:752.  https://doi.org/10.4103/0973-1482.153668 CrossRefPubMedGoogle Scholar
  34. 34.
    Gual MR, Cardona CMA, González LYC, García JR (2009) Use of nanoparticles in brachytherapy: an alternative for enhancing doses in cancer treatment. In World Congress on Medical Physics and Biomedical Engineering, Munich, pp 544–547.  https://doi.org/10.1007/978-3-642-03474-9_153
  35. 35.
    Bakhshabadi M, Ghorbani M, Meigooni AS (2013) Photon activation therapy: a Monte Carlo study on dose enhancement by various sources and activation media. Australas Phys Eng Sci Med 36:301–311.  https://doi.org/10.1007/s13246-013-0214-0 CrossRefPubMedGoogle Scholar
  36. 36.
    Sarrut D, Bardiès M, Boussion N, Freud N, Jan S, Létang J-M et al (2014) A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med Phys 41:64301.  https://doi.org/10.1118/1.4871617 CrossRefGoogle Scholar
  37. 37.
    Papadimitroulas P, Loudos G, Nikiforidis GC, Kagadis GC (2012) A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes. Med Phys 39:5238.  https://doi.org/10.1118/1.4737096 CrossRefPubMedGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2018

Authors and Affiliations

  1. 1.Nuclear Engineering Department, Faculty of EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations