Skip to main content
Log in

A statistical approach to explore cemented total hip reconstruction performance

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This study was carried out to determine mechanical behavior and bone adaptation of total hip arthroplasty (THA) subject to concentrated and distributed muscle loads and hip contact forces during activities of walking and stair climbing. Finite element modeling of THA with different prostheses, activity and loading types was developed by adopting a statistical method. Two levels of prostheses, activity, and loading types were selected for the study. 23 factorial method was then pursued to design input and output data of finite element analysis. Maximum von Mises stresses were chosen to be output data on which statistical investigation was performed to investigate contribution and interaction of main factors on mechanical failure of cemented THA reconstructions by utilizing analysis of variance method (ANOVA). This study illustrated that the maximum von Mises stresses of THA showed considerable variation for main factors and their two-factor interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Niinomi M (2002) Recent metallic materials for biomedical applications. Metal Mat Trans A 33A:477–486

    Article  Google Scholar 

  2. Charnley J (1961) Arthroplasty of the hip: a new operation. Lancet 277(7187):1129–1132

    Article  Google Scholar 

  3. Huiskes R, Verdonschot NJJ (1997) Biomechanics of artificial joints: the hip. In: Mow VC, Hayes WC (eds) Basic orthopedic biomechanics. Lipincott-Raven, New York

    Google Scholar 

  4. Malchau H, Herberts P, Garellick G, Söderman P, Eisler T (2002) Prognosis of total hip replacement. In Proceedings of 69th annual meeting of American Academy Orthopaedic Surgeons, Dallas

  5. Herberts P, Malchau H (2000) Long-term registration has improved the quality of hip replacement: a review of the Swedish THR register comparing 160,000 cases. Acta Orthop Scand 71(2):111–121

    Article  CAS  PubMed  Google Scholar 

  6. Wooley PH, Schwarz EM (2004) Aseptic loosening. Gene Ther 11:402–407

    Article  CAS  PubMed  Google Scholar 

  7. Sundfeld M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orth 77:2 177–197

    Google Scholar 

  8. MacInnes SJ, Gordon A, Wilkinson JM (2012) Risk factors for aseptic loosening following total hip arthroplasty. In: Fokter S (ed) Recent advances in arthroplasty. InTech, Rejika, pp 275–295

    Google Scholar 

  9. Stolk J, Verdonschot N, Huiskes R (2001) Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction. J Biomech 34:917–926

    Article  CAS  PubMed  Google Scholar 

  10. Stolk J, Maher SA, Verdonschot N, Prendergast PJ, Huiskes R (2003) Can finite element models detect clinically inferior cemented hip implants? Cli Orth Rel Res 409:138–150

    Article  Google Scholar 

  11. El’Sheikh HF, MacDonald BJ, Hashmi MSJ (2003) Finite element simulation of the hip joint during stumbling: a comparison between static and dynamic loading. J Mat Proc Tech 143–144:249–255

    Article  Google Scholar 

  12. Duda GN, Schneider E. Chao EYS (1997) Internal forces and moments in the femur during walking. J Biomed 30:933–941

    CAS  Google Scholar 

  13. Duda GN, Heller M, Albinger J, Schulz O, Schneider E, Claes L (1998) Influence of muscles on femoral strain distribution. J Biomech 31:841–846

    Article  CAS  PubMed  Google Scholar 

  14. Polgar K, Gill HS, Viceconti M, Murray DW, O’Connor JJ (2003) Development and numerical validation of a finite element model of the muscle standardized femur. Proc Inst Mech Eng H 217:165–172

    Article  CAS  PubMed  Google Scholar 

  15. Polgar K, Gill HS, Viceconti M, Murray DW, O’Connor JJ (2003) Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model. Proc Inst Mech Eng H 217:173–189

    Article  CAS  PubMed  Google Scholar 

  16. Jonkers I, Sauwen N, Lenaerts G, Mulier M, Van der Perre G, Jaecques S (2008) Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement. J Biomech 41:3405–3413

    Article  PubMed  Google Scholar 

  17. Mcnamara BP, Cristofolini L, Toni A, Taylor D (1997) Relationship between bone-prosthesis bonding and load transfer in total rip reconstruction. J Biomech 30(6):621–630

    Article  CAS  PubMed  Google Scholar 

  18. Joshi MG, Advani SG, Miller F, Santare MH (2000) Analysis of a femoral hip prosthesis designed to reduce stress shielding. J Biomech 33:1655–1662

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe Y, Shiba N, Matsuo S, Higuchi F, Tagawa Y, Inoue A (2000) Biomechanical study of the resurfacing hip arthroplasty finite element analysis of the femoral component. J Arthroplast 15(4):1–7

    Article  CAS  Google Scholar 

  20. Stolk J, Verdonschot N, Huiskes R (2002) Stair climbing is more detrimental to the cement in hip replacement than walking. Clin Orthop Relat Res 405:294–305

    Article  Google Scholar 

  21. Pawlikowski M, Skalski K, Haraburda M (2003) Process of hip joint prosthesis design including bone remodeling phenomenon. Com Struct 81:887–893

    Article  Google Scholar 

  22. Senalp AZ, Kayabasi O, Kurtaran H (2007) Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Mat Des 28:1577–1583

    Article  CAS  Google Scholar 

  23. Boyle C, Kim IY (2011) Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization. J Biomech 44:1722–1728

    Article  PubMed  Google Scholar 

  24. Ramos A, Completo A, Relvas C, Simoes JA (2012) Design process of a novel cemented hip femoral stem concept. Mat Des 33:313–321

    Article  CAS  Google Scholar 

  25. Bouziane MM, Benbarek S, Tabeti SMH, Bouiadjra BB, Serier B, Achour T (2014) Finite element analysis of the mechanical behavior of the different cemented hip femoral prostheses. Key Eng Mat 577–578:349–352

    Google Scholar 

  26. Sofuoglu H, Cetin ME (2015) An investigation on mechanical failure of hip joint using finite element method. Biomed Tech 60:603–616

    Article  Google Scholar 

  27. Montgomery DC (1991) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  28. Cristofolini L, Viceconti M, Cappello A, Toni A (1996) Mechanical validation of whole bone composite femur models. J Biomech 29(4):525–535

    Article  CAS  PubMed  Google Scholar 

  29. Viceconti M, Casali M, Massari B, Cristofolini L, Bassini S, Toni A (1996) The ‘standardized femur program’ proposal for a reference geometry to be used for the creation of finite element models of the femur. J Biomech 29(9):1241

    Article  CAS  PubMed  Google Scholar 

  30. Papini M, Zdero R, Zalzal P, Schemitsch EH (2007) The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. J Biomech Eng 129(1):12–19

    Article  CAS  PubMed  Google Scholar 

  31. Cetin ME (2012) The investigatıon of a human hip joint under the effect of different loading by using finite element method. MSc thesis (in Turkish), Karadeniz Technical University, Trabzon

  32. Cetin ME, Sofuoglu H (2012) The investigation of a 3-dimensional human hip joint subjected to distributed load by using finite element method (in Turkish). Sakarya University J Sci 16(3):377–387

    Article  Google Scholar 

  33. ANSYS Release 15, ANSYS mechanical APDL element reference, pp 701–997

  34. Okyar AF, Bayoglu R (2012) The effect of loading in mechanical response predictions of bone lengthening. Med Eng Phy 34(9):1362–1367

    Article  Google Scholar 

  35. Bayoglu R, Okyar AF (2015) Implementation of boundary conditions in modeling the femur is critical for the evaluation of distal intramedullary nailing. Med Eng Phy 37(11):1053–1060

    Article  Google Scholar 

  36. Heller MO, Bergmann G, Kassi JP, Claes L, Haas NP, Duda GN (2005) Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech 38:1155–1163

    Article  CAS  PubMed  Google Scholar 

  37. Viceconti M, Ansaloni M, Baleani M, Toni A (2003) The muscle standardized femur: a step forward in the replication of numerical studies in biomechanics. Proc Inst Mech Eng H 217(2):105–110

    Article  CAS  PubMed  Google Scholar 

  38. Prendergast PJ (1997) Finite element models in tissue mechanics and orthopedic implant design. Clin Biomech 12(6):343–366

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Emin Cetin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetin, M.E., Sofuoglu, H. A statistical approach to explore cemented total hip reconstruction performance. Australas Phys Eng Sci Med 41, 177–188 (2018). https://doi.org/10.1007/s13246-018-0627-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-018-0627-x

Keywords

Navigation