Evaluation of dose enhancement in presence of gold nanoparticles in eye brachytherapy by 103Pd source


In recent years, the use of gold nanoparticles in radiation therapy has been introduced as a new approach in radiotherapy. The aim of this study is to investigate the effect of gold nanoparticles (GNPs) in plaque brachytherapy for choroidal melanoma using Monte Carlo (MC) simulation. MCNPX code was used for simulation of human eye, 103Pd (model 200) brachytherapy source and the 20 mm COMS eye plaque that was loaded with 24 103Pd seeds and standardized by Collaborative Ocular Melanoma Study (COMS). The tumour was defined from the inner surface of choroid with 0.55 cm height and latticed with gold nanospheres and it was filled with different concentrations of 5, 10 and 15 mg/g GNPs, separately. Dose rate and dose enhancement factor in tumour and normal tissues of the eye (without gold) was examined for this case and compared with gold–water mixture of the same concentrations distributed in the tumour. The results show that with increasing the concentration of GNPs, the dose in the tumour increases and the dose to the normal tissues decreases. Furthermore, the time that is required to deliver the prescribed dose to the tumour decreases. In the gold nanosphere case for 5, 10 and 15 mg/g concentrations, the DEF in the apex of the tumour are 1.28, 1.46, 1.44 and at the distance of 6.5 mm in the normal tissue (outside the tumour) this factor would be 0.82, 0.73 and 0.68. The comparison between two cases of gold nanospheres and gold–water mixture shows that when the gold concentrations are defined as mixed with water, the dose enhancement in the first depths are higher than when the gold-nanoparticles are distributed inside the tumour. Furthermore due to more reduced particle flux for water-mixture case, by an increase in the depth the dose enhancement in gold-nanosphere increases compared with gold–water mixture case.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Bell DJ, Wilson MW (2004) Choroidal melanoma: natural history and management options. Cancer Control 11(5):296–303

    Article  PubMed  Google Scholar 

  2. 2.

    Detanac D, Jancic S, Rakocevic M, Ceranic M (2015) Current concepts in therapy of uveal melanoma. Sanamed 10 (2):137–141

    Article  Google Scholar 

  3. 3.

    Jovanovic P, Mihajlovic M, Djordjevic-Jocic J, Vlajkovic S, Cekic S, Stefanovic V (2013) Ocular melanoma: an overview of the current status. Int J Clin Exp Pathol 6(7):1230–1244

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Nathan P, Cohen V, Coupland S, Curtis K, Damato B, Evans J, Fenwick S, Kirkpatrick L, Li O, Marshall E (2015) Uveal melanoma National Guidelines. pp. 1–112

  5. 5.

    Sheilds CL, Shields JA (2009) Ocular melanoma: relatively rare but requiring respect. Clin Dermatol 27(1):122–133

    Article  Google Scholar 

  6. 6.

    Shields CL, Cater J, Shields JA, Chao A, Krema H, Materin M et al (2002) Combined plaque radiotherapy and transpupillary thermotherapy for choriodal melanoma: tumor control and treatment complications in 270 consecutive patients. Arch Ophthalmol 120(7):933–940

    Article  PubMed  Google Scholar 

  7. 7.

    Chiu-Tsao S-T, Astrahan MA, Finger PT, Followill DS, Meigooni AS, Melhus CS, Mourtada F, Napolitano ME, Nath R, Rivard MJ (2012) Dosimetry of 125I and 103Pd COMS eye plaques for intraocular tumors: Report of Task Group 129 by the AAPM and ABS. Med Phys 39(10):6161–6184

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Group COMS (1995) COMS manual of procedures. Springfield, VA: National Technical Information Service

    Google Scholar 

  9. 9.

    Finger PT (1997) Radiation therapy for choroidal melanoma. Surv Ophthalmol 42(3):215–232

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Leonard K, Bannon E, Mignano J, Duker J, Gagne N, Rivard M (2010) Eye plaque brachytherapy for the treatment of uveal melanoma: the 2010 Tufts Medical Center experience. Int J Radiat Oncol Biol Phys 78(3):S268

    Article  Google Scholar 

  11. 11.

    Jones B (2009) Monte carlo calculations of microscopic dose enhancement for gold nanoparticle-aided radiation therapy. Georgia Institute of Technology, Georgia Institute of Technology. p. 33

  12. 12.

    Robar J (2006) Generation and modelling of megavoltage photon beams for contrast-enhanced radiation therapy. Phys Med Biol 51(21):5487

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49 (18):N309

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Anijdan S, Shirazi A, Mahdavi S, Ezzati A, Mofid B, Khoei S, Zarrinfard M (2012) Megavoltage dose enhancement of gold nanoparticles for different geometric set-ups: measurements and Monte Carlo simulation. Iran J Radiat Res 10(3–4):183–186

    Google Scholar 

  15. 15.

    Chow JC, Leung MK, Jaffray DA (2012) Monte Carlo simulation on a gold nanoparticle irradiated by electron beams. Phys Med Biol 57(11):3323

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Douglass M, Bezak E, Penfold S (2013) Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Med Phys 40(7):071710

    Article  PubMed  Google Scholar 

  17. 17.

    Jones BL, Krishnan S, Cho SH (2010) Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med Phys 37(7):3809–3816

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Leung MK, Chow JC, Chithrani BD, Lee MJ, Oms B, Jaffray DA (2011) Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 38(2):624–631

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Cho SH (2005) Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 50 (15):N163

  20. 20.

    Roeske JC, Nuñez L, Hoggarth M, Labay E, Weichselbaum RR (2007) Characterization of the theorectical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat 6(5):395–401

    Article  PubMed  Google Scholar 

  21. 21.

    Seregard S, Damato B. (2014) Uveal malignant melanoma: management options for brachytherapy. In: Clinical ophthalmic oncology. Springer, Berlin pp. 173–188

    Google Scholar 

  22. 22.

    Stannard C, Sauerwein W, Maree G, Lecuona K (2013) Radiotherapy for ocular tumours. Eye 27(2):119–127

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Zhang SX, Gao J, Buchholz TA, Wang Z, Salehpour MR, Drezek RA, Yu T-K (2009) Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study. Biomed Microdevices 11(4):925–933

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Ghorbani M, Pakravan D, Bakhshabadi M, Meigooni AS (2012) Dose enhancement in brachytherapy in the presence of gold nanoparticles: a Monte Carlo study on the size of gold nanoparticles and method of modelling. Nukleonika 57:401–406

    CAS  Google Scholar 

  25. 25.

    Kwon J, Sutherland K, Hashimoto T, Date H (2015) Dose distribution of electrons from gold nanoparticles by proton beam irradiation. Int J Med Phys Clin Engin Radiat Oncol 4(01):49–53

    Article  Google Scholar 

  26. 26.

    Asadi S, Vaez-zade M, Masoudi SF, Rahmani F, Knaup C, Meigooni AS (2014) Gold nanoparticles-based brachytherapy enhancement in choroidal melanoma using a full Monte Carlo modelling of human eye. J Appl Clin Med Phys 16:344–357

    Article  Google Scholar 

  27. 27.

    Taylor R, Rogers D (2008) An EGSnrc Monte Carlo-calculated database of TG-43 parameters. Med Phys 35(9):4228–4241

    Article  Google Scholar 

  28. 28.

    Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, Mitch MG, Nath R, Williamson JF (2004) Update of AAPM task group no. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31(3):633–674

    Article  PubMed  Google Scholar 

  29. 29.

    Zabihzadeh M, Rezaei H, Shakarami Z, Feghhi M, Hosseini M (2015) Dosimetric Characteristics of 103Pd (Theragenices, Model 200) brachytherapy source. Biomed Pharmacol 8:15–23

    Article  Google Scholar 

  30. 30.

    Yoriyaz H, Sanchez A, Dos Santos A (2005) A new human eye model for ophthalmic brachytherapy dosimetry. Radiat Prot Dosim 115(1–4):316–319

    CAS  Article  Google Scholar 

  31. 31.

    Group COMS (2010) Comparison of eye plaque dosimetry using deterministic and Monte Carlo methods. Oregon State University. pp. 1–39

  32. 32.

    Thomson RM, Taylor REP, Rogers DWO (2008) Monte Carlo dosimetry for 125I and 103Pd eye plaque brachytherapy. Med Phys 35(12):5530–5543

    CAS  Article  Google Scholar 

  33. 33.

    Jo M-R, Bae S-H, Go M-R, Kim H-J, Hwang Y-G, Choi S-J (2015) Toxicity and biokinetics of colloidal gold nanoparticles. Nanomaterials 5(2):835–850

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Kim K-T, Zaikova T, Hutchison JE, Tanguay RL (2013) Gold nanoparticles disrupt zebrafish eye development and pigmentation. Toxicol Sci 133(2):275–288

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Yah CS (2013) The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed Res 24(3):400–413

    CAS  Google Scholar 

Download references


This study is part of M.Sc. thesis of Mr Hadi Rezaei. Special thanks to Ahvaz Jundishahpur University of Medical Sciences for financial support of this work (Grant number: IORC-9201).

Author information



Corresponding author

Correspondence to Hadi Rezaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This research does not contain any study with human participants or animals performed by any of the authors. The other ethical issues have been taken into account.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezaei, H., Zabihzadeh, M., Ghorbani, M. et al. Evaluation of dose enhancement in presence of gold nanoparticles in eye brachytherapy by 103Pd source. Australas Phys Eng Sci Med 40, 545–553 (2017). https://doi.org/10.1007/s13246-017-0555-1

Download citation


  • Eye brachytherapy
  • COMS plaque
  • Gold nanopartcles
  • 103Pd source