Novel application of 3D printing in brachytherapy using MED610 3D printed insert for I-125 ROPES eye plaque


The purpose of this study was to evaluate if MED610 3D printed material can be used as a surrogate for acrylic in the manufacturing of a replacement insert used in an eye plaque brachytherapy applicator. Measurement of the dose distributions from a standard acrylic insert were compared with dose obtained from MED610 3D printed replica using GafChromic® EBT3 films. The study used a 15 mm Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaque applicator loaded with I-125 (model 6711) seeds. GafChromic® EBT3 films were placed in a solid water phantom and dose distributions were measured three-dimensionally both along and perpendicular to a loaded ROPES eye plaque’s central axis (CAX). Each measurement was performed with the stainless steel plaque backing attached to the eye plaque, to assess the variability of the dose distributions between the acrylic and MED 610 insert. Results of dose along the central axis were compared between acrylic and MED610 insert and the results found agreement within 1.5 %. Off-axis profiles were also compared between the acrylic insert and MED610 and were found to agree to within 7 % in the central 15 mm width centred on CAX at depths ranging from z = 2 mm to z = 8 mm in 2 mm increments. The aim of this investigation was to verify the consistency between doses profiles over a range of clinically relevant depths for a 15 mm loaded ROPES plaque using acrylic versus MED610 material. The results show an agreement between experimental measurements given the film uncertainty of 7 %.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    The Collaborative Ocular Melanoma Study (COMS) (1998) Randomized trial of pre-enucleation radiation of large choroidal melanomas I: characteristics of patients enrolled and not enrolled in COMS report no. 9. Am J Opthalmol 125:767–778

    Article  Google Scholar 

  2. 2.

    ABS-OOFT-Committee (2013) The American Brachytherapy Society consensus guidelines for plaque brachytherapy of uveal melanoma and retinoblastoma. Brachytherapy 13(1):1–14

    Google Scholar 

  3. 3.

    COMS (1993) Design and methods of a clinical trial for a rare condition: the Collaborative Ocular Melanoma Study. COMS report no. 3. Control Clin Trials 14(5):362–391

    Article  Google Scholar 

  4. 4.

    Nath R et al (1995) Dosimetry of interstitial brachytherapy sources. Med Phys 22(2):209–234

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Chiu-Tsao ST et al (2012) Dosimetry of (125)I and (103)Pd COMS eye plaques for intraocular tumors: report of Task Group 129 by the AAPM and ABS. Med Phys 39(10):6161–6184

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Nag S et al (2003) The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas. Int J Radiat Oncol Biol Phys 56:544–555

    Article  PubMed  Google Scholar 

  7. 7.

    Oncura (ed) (2014) Instructions for the use of iodine-125 seeds for medical brachytherapy treatments. In: Oncoseed, GE Healthcare, Arlington Heights, pp 1–10

  8. 8.

    Nath R et al (1995) Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. Med Phys 22:209–234

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Rivard MJ et al (2004) Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31(3):633–674

    Article  PubMed  Google Scholar 

  10. 10.

    Rivard MJ et al (2007) Supplement to the 2004 Update of the AAPM Task Group No. 43 Report. Med Phys 34:2187–2205

    Article  PubMed  Google Scholar 

  11. 11.

    Poder J, Corde S (2013) I-125 ROPES eye plaque dosimetry: validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic EBT3 films. Med Phys 40(12):121709

    Article  PubMed  Google Scholar 

  12. 12.

    Granero D, Perez-Calatayud J (2004) Dosimetric study of the 15 mm ROPES eye plaque. Med Phys 31:3330–3336

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Poder J et al (2013) ROPES eye plaque dosimetry commissioning and verification of an ophthalmic brachytherapy treatment planning system. In: J Phys Conf Ser, vol 444, pp 012102

  14. 14.

    Krintz A et al (2002) Verification of plaque simulator dose distributions using radiochromic film. Med Phys 29:1220–1221

    Google Scholar 

  15. 15.

    Acar H et al (2013) Evaluation of material heterogeneity dosimetric effects using radiochromic film for COMS eye plaques loaded with (125)I seeds (model I25.S16). Med Phys 40(1):011708

    Article  PubMed  Google Scholar 

  16. 16.

    Karolis C, Amies C, Frost R (1989) The development of a thin stainless steel eye plaque to treat tumours of the eye up to 15 mm in diameter. Australas Phys Eng Sci Med 12:172–177

    CAS  PubMed  Google Scholar 

  17. 17.

    Stratasys (2014) DentalMaterialsSpecSheet-US-05-14. Stratasys, Eden Prairie

  18. 18.

    Frye A (2013) MED_610 properties biocompatible. In: Translucent rigid dimensionally stable, Forecast3D, Carlsbad

  19. 19.

    Lin H-H, Chang H-W, Lo L-J (2015) Development of customized positioning guides using computer-aided design and manufacturing technology for orthognathic surgery. Int J Comput Assist Radiol Surg 10:1–13

    Google Scholar 

  20. 20.

    Ellis B, Smith R (2009) Polymers: a property database, 2nd edn. CRC Press-Taylor and Francis Group, Boca Raton

    Google Scholar 

  21. 21.

    Department, C.U.E (2003) Materials data book. Cambridge University, Cambridge

  22. 22.

    Chair A et al (1998) Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group 55. Med Phys 25:2093–2115

    Article  Google Scholar 

  23. 23.

    Poludniowski G et al (2009) SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes. Phys Med Biol 54(19):N433

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Brown TA et al (2012) Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams. Med Phys 39(12):7412–7417

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Chung H, Lynch B, Samant S (2010) High-precision gafchromic EBT film-based absolute clinical dosimetry using a standard flatbed scanner without he use of scanner non-uniformity correction. Med Phys 11:101–115

    Google Scholar 

  26. 26.

    Menegott L, Delana A, Martignano A (2008) Radiochromic film dosimetry with flatbed scanners: a fast and accurate method for dose calibration and uniformity correction with single film exposure. Med Phys 35:3078–3085

    Article  Google Scholar 

  27. 27.

    Butson M, Cheung T, Yu P (2009) Evaluation of the magnitude of EBT GafChromic film polarization effects. Australas Phys Eng Sci Med 32:21–25

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    de Werd LA et al (2011) A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO. Med Phys 38:782–801

    Article  Google Scholar 

  29. 29.

    Pai S et al (2007) TG 69: radiographic film for megavoltage beam dosimetry. Med Phys 34(6):2228–2258

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Hill R et al (2014) Advances in kilovoltage x-ray beam dosimetry. Phys Med Biol 59:R183–R231

    Article  PubMed  Google Scholar 

  31. 31.

    Reniers B, Verhaegen F, Vynckier S (2004) The radial dose function of low-energy brachytherapy seeds in different solid phantoms: comparison between calculations with EGSnrc and MCNP4C Monte Carlo codes and measurements. Phys Med Biol 49:1569–1582

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Granero D et al (2004) Novel application of 3D printing in brachytherapy using MED610 3D printed insert for I-125 ROPES eye plaque. Med Phys 31:3330–3336

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Jarema T (2014) Eye plaque dosimetry verification using novel solid state devices, in faculty of engineering. University of Woollongong, Woollongong

    Google Scholar 

  34. 34.

    Weaver M et al (2014) Panoptes: calibration of a dosimetry system for eye brachytherapy. Radiat Meas 71:310–314

    CAS  Article  Google Scholar 

  35. 35.

    Espalin D et al (2014) Sterilization of FDM-manufactured parts. Stratasys White Paper, Eden Prairie

    Google Scholar 

  36. 36.

    Stratasys (2016) Advancing health care with 3D printing—applications and guidance on material selection. Stratasys White Paper, Eden Prairie

    Google Scholar 

Download references


The author would like to thank 3D Medical for providing resources for this investigation. In addition, the author would also like to thank Danielle Tyrrell and Adrian Gibbs for their support and useful discussions in this project.

Author information



Corresponding author

Correspondence to L. Sim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sim, L. Novel application of 3D printing in brachytherapy using MED610 3D printed insert for I-125 ROPES eye plaque. Australas Phys Eng Sci Med 39, 863–870 (2016).

Download citation


  • Eye plaque
  • Brachytherapy
  • MED610
  • Gafchromic
  • Film dosimetry