Skip to main content

An assessment on the use of RadCalc to verify Raystation Electron Monte Carlo plans

Abstract

Large differences in monitor units have been observed when RadCalc, a pencil-beam-algorithm based software, is used to verify clinical electron plans from Raystation, a Monte-Carlo-algorithm based planning system. To investigate the problem, a number of clinical plans as well as test plans were created and calculated in both systems, with the resultant monitor units compared. The results revealed that differences between the two systems are significant when the geometry includes inhomogeneities and curved surfaces. The RadCalc pencil-beam-algorithm fails to handle such complexities, particularly in the presence of surface curvature. The error is not negligible and cannot be easily corrected for. It is concluded that RadCalc is not adequate to verify electron Monte Carlo plans from Raystation when complex geometry is involved and alternative methods should be developed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, Kawrakow I, Keall PJ, Liu H, Ma CM, Rogers DWO, Seuntjens J, Sheikh-Bagheri D, Siebers JV (2007) Report of the AAPM Task Group Report No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 34:4818

    Article  PubMed  Google Scholar 

  2. 2.

    Andreo P (1991) Monte Carlo techniques in medical radiation physics. Phys Med Biol 36:861

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Ma CM, Jiang SB (1999) Monte Carlo modelling of electron beams from medical accelerators. Phys Med Biol 44:R157

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Mzenda B, Mugabe KV, Sims R, Godwin G, Loria D (2014) Modeling and dosimetric performance evaluation of the Raystation treatment planning system. J Appl Clin Med Phys 15(5):29

    Google Scholar 

  5. 5.

    Fragoso M, Pillai S, Solberg TD, Chetty IJ (2008) Experimental verification and clinical implementation of a commercial Monte Carlo electron beam dose calculation algorithm. Med Phys 35(3):1028

    Article  PubMed  Google Scholar 

  6. 6.

    Archibald-Heeren B, Liu G (2016) Raystation Monte Carlo application: evaluation of electron calculations with entry obliquity. Australas Phys Eng Sci Med 39:441–452

    Article  PubMed  Google Scholar 

  7. 7.

    Kawrakow I (2001) VMC++, electron and photon Monte Carlo calculations optimised for radiation treatment planning. In: Kling A, Barao FJC, Nakagawa M, Tavora L, Vaz P (eds) Advanced Monte Carlo for radiation physics, particle transport simulation and applications: proceedings of the Monte Carlo 2000 conference, Lisbon, 23–26 October 2000. Springer, Berlin, pp 229–236

  8. 8.

    Gibbons JP, Antolak JA, Followill DS, Huq MS, Klein EE, Lam KL, Palta JR, Roback DM, Reid M, Khan FM (2014) Report of the AAPM Therapy Physics Committee Taks Group No. 71: monitor unit calculations for external photon and electron beams. Med Phys 41(3):031501

    Article  PubMed  Google Scholar 

  9. 9.

    Cygler JE, Daskalov G, Chan GH (2004) Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning. Med Phys 31:142

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Ding GX, Cygler JE, Yu CW, Kalach NI, Daskalov G (2005) A comparison of electron beam dose calculation accuracy between treatment planning systems using either a pencil beam or a Monte Carlo algorithm. Int J Radiat Oncol Biol Phys 63(2):622

    Article  PubMed  Google Scholar 

  11. 11.

    Edimo P, Clermont C, Kwato MG, Vyncker S (2009) Evaluation of a commercial VMC++ Monte Carlo based treatment planning system for electron beam using EGSnrc/BEAMnrc simulations and measurements. Phys Med 25(3):111

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    RaySearch Laboratories AB (2014) RayStation5: user manual, version 4.6.073. Stockholm

  13. 13.

    Khan FM, Doppke KP, Hogstrom KR, Kutcher GJ, Nath R, Prasad SC, Purdy JA, Rozenfeld M, Werner BL (1991) Report of the AAPM Task Group No. 25, clinical electron-beam dosimetry. Med Phys 18(1):73

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Jursinic PA, Mueller R (1997) A sector-integration method for calculating the output factors of irregularly shaped electron fields. Med Phys 24:1765

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Ding GX, Rogers DWO, Cygler JE, Mackie TR (1997) Electron fluence correction factors for conversion of dose in plastic to dose in water. Med Phys 24:161

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Andreo P, Burns DT, Hohlfeld K, Huq MS, Kanai T, Laitano F, Smith VG, Vynckier S (2000) Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water IAEA Technical Reports Series No. 398. International Atomic Energy Agency, Vienna

    Google Scholar 

  17. 17.

    Zarza-Moreno M, Carreira P, Madureira L, Miras del Rio H, Salguero FJ, Leal A, Teixeira N, Jesus AP, More G (2014) Dosimetric effect by shallow air cavities in high energy electron beams. Phys Med 30:234

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Khan FM (2003) The physics of radiation therapy, 3rd edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  19. 19.

    Ritenour ER, Cacak RK, Hendee WR (1983) Ionization produced by electron beams beneath curved surfaces. Med Phys 10(5):669

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yunfei Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Archibald-Heeren, B., Byrne, M. et al. An assessment on the use of RadCalc to verify Raystation Electron Monte Carlo plans. Australas Phys Eng Sci Med 39, 735–745 (2016). https://doi.org/10.1007/s13246-016-0470-x

Download citation

Keywords

  • Electron
  • Monte Carlo
  • Pencil beam
  • Curvature
  • Inhomogeneity