Skip to main content
Log in

Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study

  • Scientific Note
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Shear wave propagation speed has been regarded as an attractive indicator for quantitatively measuring the intrinsic mechanical properties of soft tissues. While most existing techniques use acoustic radiation force (ARF) excitation with focal spot region based on linear array transducers, we try to employ a special ARF with a focal line region and apply it to viscoelastic materials to create shear waves. First, a two-dimensional capacitive micromachined ultrasonic transducer with \(64 \times 128\) fully controllable elements is realised and simulated to generate this special ARF. Then three-dimensional finite element models are developed to simulate the resulting shear wave propagation through tissue phantom materials. Three different phantoms are explored in our simulation study using: (a) an isotropic viscoelastic medium, (b) within a cylindrical inclusion, and (c) a transverse isotropic viscoelastic medium. For each phantom, the ARF creates a quasi-plane shear wave which has a preferential propagation direction perpendicular to the focal line excitation. The propagation of the quasi-plane shear wave is investigated and then used to reconstruct shear moduli sequentially after the estimation of shear wave speed. In the phantom with a transverse isotropic viscoelastic medium, the anisotropy results in maximum speed parallel to the fiber direction and minimum speed perpendicular to the fiber direction. The simulation results show that the line excitation extends the displacement field to obtain a large imaging field in comparison with spot excitation, and demonstrate its potential usage in measuring the mechanical properties of anisotropic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Varghese T (2009) Quasi-static ultrasound elastography. Ultrasound Clin 4(3):323–338

    Article  PubMed  PubMed Central  Google Scholar 

  2. Doherty J, Trahey G, Nightingale K, Palmeri M (2013) Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr 60(4):685–701

    Article  Google Scholar 

  3. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13(2):111–134

    Article  CAS  PubMed  Google Scholar 

  4. Grajo JR, Barr RG (2012) Compression elasticity imaging of the breast: an overview. Appl Radiol 41(10):18–23

    Google Scholar 

  5. Skovoroda A, Emelianov S, O’Donnell M (1995) Tissue elasticity reconstruction based on ultrasonic displacement and strain images. IEEE Trans Ultrason Ferroelectr 42(4):747–765

    Article  Google Scholar 

  6. Palmeri ML, Wang MH, Rouze NC et al (2011) Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease. J Hepatol 55(3):666–672

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sebag F, Vaillant-Lombard J et al (2010) Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocr Metab 95(12):5281–5288

    Article  CAS  PubMed  Google Scholar 

  8. Kallel F, Bertrand M (1996) Tissue elasticity reconstruction using linear perturbation method. IEEE Trans Med Imaging 15(3):299–313

    Article  CAS  PubMed  Google Scholar 

  9. Baldewsing RA, Danilouchkine MG et al (2008) An inverse method for imaging the local elasticity of atherosclerotic coronary plaques. IEEE Trans Inf Technol Biomed 12(3):277–289

    Article  PubMed  Google Scholar 

  10. Hoskins PR, Svensson W (2012) Current state of ultrasound elastography. Ultrasound 20(1):3–4

    Article  Google Scholar 

  11. Sandrin L, Tanter M, Catheline S, Fink M (2002) Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr 49(4):426–435

    Article  Google Scholar 

  12. Sandrin L, Tanter M, Gennisson JL, Catheline S, Fink M (2002) Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Trans Ultrason Ferroelectr 49(4):436–446

    Article  Google Scholar 

  13. Sandrin L, Fourquet B et al (2003) Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 29(12):1705–1713

    Article  PubMed  Google Scholar 

  14. Sarvazyan AP, Rudenko OV et al (1998) Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 24(9):1419–1435

    Article  CAS  PubMed  Google Scholar 

  15. Nightingale K, McAleavey S, Trahey G (2003) Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med Biol 29(12):1715–1723

    Article  PubMed  Google Scholar 

  16. Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr 51(4):396–409

    Article  Google Scholar 

  17. McAleavey SA, Menon M, Orszulak J (2007) Shear-modulus estimation by application of spatially-modulated impulsive acoustic radiation force. Ultrason Imaging 29(2):87–104

    Article  PubMed  Google Scholar 

  18. Chen S, Fatemi M, Greenleaf JF (2004) Quantifying elasticity and viscosity from measurement of shear wave speed dispersion. J Acoust Soc Am 115(6):2781–2785

    Article  PubMed  Google Scholar 

  19. Cheng Y, Li R, Li S et al (2012) Shear wave elasticity imaging based on acoustic radiation force and optical detection. Ultrasound Med Biol 38(9):1637–1645

    Article  PubMed  Google Scholar 

  20. Deffeux T, Montaldo G, Tanter M, Fink M (2009) Shear wave spectroscopy for in vivo quantification of human soft tissues viscoelasticity. IEEE Trans Med Imaging 28(3):313–322

    Article  Google Scholar 

  21. Song P, Zhao H, Manduca A et al (2012) Comb-push ultrasound shear elastography (cuse): a novel method for two-dimensional shear elasticity imaging of soft tissues. IEEE Trans Med Imaging 31(9):1821–1832

    Article  PubMed  PubMed Central  Google Scholar 

  22. Song P, Urban M, Manduca A et al (2013) Comb-push ultrasound shear elastography (cuse) with various ultrasound push beams. IEEE Trans Med Imaging 32(8):1435–1447

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nabavizadeh A, Song P, Chen S et al (2015) Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams. IEEE Trans Ultrason Ferroelectr 62(4):647–662

    Article  Google Scholar 

  24. Gennisson JL, Catheline S, Chaffai S, Fink M (2003) Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles. J Acoust Soc Am 114(1):536–541

    Article  PubMed  Google Scholar 

  25. McLaughlin JR, Renzi D, Yoon JR (2007) Anisotropy reconstruction from wave fronts in transversely isotropic acoustic media. SIAM J Appl Math 68(1):24–42

    Article  Google Scholar 

  26. Gennisson JL, Deffeux T, Mace E et al (2010) Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 36(5):789–801

    Article  PubMed  Google Scholar 

  27. Guo M, Lu M, Zhang H, Liu H, Zhang YT (2014) A rod-like acoustic radiation force in ultrasound-based elastography: a simulation study. In: The international conference on health informatics, Springer, pp 148–151

  28. Lee KH, Szajewski BA, Hah Z et al (2012) Modeling shear waves through a viscoelastic medium induced by acoustic radiation force. Int J Numer Method Biomed Eng 28(6–7):678–696

    Article  PubMed  Google Scholar 

  29. Vappou J, Maleke C, Konofagou EE (2009) Quantitative viscoelastic parameters measured by harmonic motion imaging. Phys Med Biol 54(11):3579–3594

    Article  PubMed  Google Scholar 

  30. Palmeri ML, Sharma AC, Bouchard RR et al (2005) A finite-element method model of soft tissue response to impulsive acoustic radiation force. IEEE Trans Ultrason Ferroelectr 52(10):1699–1712

    Article  Google Scholar 

  31. Bercoff J, Tanter M, Muller M, Fink M (2004) The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force. IEEE Trans Ultrason Ferroelectr 51(11):1523–1536

    Article  Google Scholar 

  32. Levinson SF (1987) Ultrasound propagation in anisotropic soft tissues: the application of linear elastic theory. J Biomech 20(3):251–260

    Article  CAS  PubMed  Google Scholar 

  33. Rubin D, Krempl E, Lai WM (2012) Introduction to continuum mechanics. Butterworth-Heinemann, Waltham

    Google Scholar 

  34. Wells PN, Liang HD (2011) Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 8(64):1521–1549

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bower AF (2009) Applied mechanics of solids. CRC Press, Boca Raton

    Google Scholar 

  36. Zimmer J, Cost JR (1970) Determination of the elastic constants of a unidirectional fiber composite using ultrasonic velocity measurements. J Acoust Soc Am 47(3B):795–803

    Article  CAS  Google Scholar 

  37. Torr G (1984) The acoustic radiation force. Am J Phys 52(5):402–408

    Article  Google Scholar 

  38. Parker KJ (1983) Ultrasonic attenuation and absorption in liver tissue. Ultrasound Med Biol 9(4):363–369

    Article  CAS  PubMed  Google Scholar 

  39. Kim BH, Kim Y, Lee S et al. (2012) Design and test of a fully controllable 64\(\times\)128 2-d cmut array integrated with reconfigurable frontend asics for volumetric ultrasound imaging. In: 2012 IEEE international ultrasonics symposium (IUS), pp 77–80

  40. Jensen JA (1996) Field: A program for simulating ultrasound systems. In: 10th Nordicbaltic conference on biomedical imaging, vol 4, Supplement 1, Part 1: 351–353

  41. Urban M, Greenleaf J (2009) A Kramers-Kronig-based quality factor for shear wave propagation in soft tissue. Phys Med Biol 54(19):5919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fung Y (1965) Foundations of solid mechanics. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Shenzhen Foundational Research Project (SGLH20131010110119871, GJHZ20140415152115754), and the National Natural Science Foundation of China (61471243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhua Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Abbott, D., Lu, M. et al. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study. Australas Phys Eng Sci Med 39, 187–197 (2016). https://doi.org/10.1007/s13246-015-0417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0417-7

Keywords

Navigation