Instruments to assess and measure personal and environmental radiofrequency-electromagnetic field exposures

  • Chhavi Raj BhattEmail author
  • Mary Redmayne
  • Michael J. Abramson
  • Geza Benke


Radiofrequency-electromagnetic field (RF-EMF) exposure of human populations is increasing due to the widespread use of mobile phones and other telecommunication and broadcasting technologies. There are ongoing concerns about potential short- and long-term public health consequences from RF-EMF exposures. To elucidate the RF-EMF exposure-effect relationships, an objective evaluation of the exposures with robust assessment tools is necessary. This review discusses and compares currently available RF-EMF exposure assessment instruments, which can be used in human epidemiological studies. Quantitative assessment instruments are either mobile phone-based (apps/software-modified and hardware-modified) or exposimeters. Each of these tool has its usefulness and limitations. Our review suggests that assessment of RF-EMF exposures can be improved by using these tools compared to the proxy measures of exposure (e.g. questionnaires and billing records). This in turn, could be used to help increase knowledge about RF-EMF exposure induced health effects in human populations.


Exposimeters Mobile phone exposures Radiofrequency-electromagnetic exposures Radiofrequency-electromagnetic exposure assessment Radiofrequency-electromagnetic exposures tools 



This research project is supported by the Centre for Population Health Research on Electromagnetic Energy (PRESEE), School of Public Health and Preventive Medicine, Monash University. The centre is funded by a grant from the National Health and Medical Research Council, Australia. The authors would like to thank Bob Johnson, Narda Safety Test Solutions, New York, USA; Nicolas Doare, SATIMO, Courtaboeuf, France; Arno Thielens, Ghent University/iMinds, Ghent, Belgium; Marco Zahner, Fields at Work GmbH, Zürich, Switzerland, Pasi Niemi, Cellraid Oulunsalo, Finland, and Thierry Sarrebourse, Whist Lab, Institut Mines-Télécom/Orange, Paris, France, for sharing relevant technical information and granting permission to use the pictures of their respective products.


  1. 1.
    Vecchia P, Matthes R, Ziegelberger G et al (2009) Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz–300 GHz). International Commission on Non-Ionizing Radiation Protection (Oberschleissheim, Germany)Google Scholar
  2. 2.
    Markov M, Grigoriev YG (2013) Wi-Fi technology-an uncontrolled global experiment on the health of mankind. Electromagn Biol Med 32:200–208CrossRefPubMedGoogle Scholar
  3. 3.
    Allen S (1991) Radiofrequency field measurements and hazard assessment. J Radiol Prot 11:49–62CrossRefGoogle Scholar
  4. 4.
    Miyakoshi J (2009) Cellular biology aspects of mobile phone radiation. In: Lin JC (ed) Advances in electromagnetic field in living systems: health effects of cell phone radiation, vol 5. Springer, New York, pp 1–33CrossRefGoogle Scholar
  5. 5.
    IEEE (2006) IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Std C95.1™-2005 (Revision of IEEE Std C95.1-1991)Google Scholar
  6. 6.
    Berg-Beckhoff G, Blettner M, Kowall B et al (2009) Mobile phone base stations and adverse health effects: phase 2 of a cross-sectional study with measured radio frequency electromagnetic fields. Occup Environ Med 6:124–130Google Scholar
  7. 7.
    Ha M, Im H, Lee M, Kim HJ, Kim BC, Gimm YM, Pack JK (2007) Radio-frequency radiation exposure from AM radio transmitters and childhood leukemia and brain cancer. Am J Epidemiol 166(3):270–279CrossRefPubMedGoogle Scholar
  8. 8.
    Redmayne M, Smith E, Abramson MJ (2013) The relationship between adolescents’ well-being and their wireless phone use: a cross-sectional study. Environ Health 12:90CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rothman KJ, Chou CK, Morgan R et al (1996) Assessment of cellular telephone and other radio frequency exposure for epidemiologic research. Epidemiology 7:291–298CrossRefPubMedGoogle Scholar
  10. 10.
    Foster KR, Moulder JE (2013) Wi-Fi and health: review of current status of research. Health Phys 105:561–575CrossRefPubMedGoogle Scholar
  11. 11.
    ICT Facts and Figures (2014) International Telecommunication Union Geneva 20, Switzerland. Accessed 17 August 2014
  12. 12.
    Redmayne M (2013) New Zealand adolescents’ cellphone and cordless phone user-habits: are they at increased risk of brain tumours already? A cross-sectional study. Environ Health 12:5CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hardell L, Carlberg M (2012) Use of mobile and cordless phones and survival of patients with glioma. Neuroepidemiology 40:101–108CrossRefPubMedGoogle Scholar
  14. 14.
    Frei P, Mohler E, Neubauer G et al (2009) Temporal and spatial variability of personal exposure to radio frequency electromagnetic fields. Environ Res 109:779–785CrossRefPubMedGoogle Scholar
  15. 15.
    Gajšek P, Ravazzani P, Wiart J et al (2013) Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz–6 GHz). J Expo Sci Environ Epidemiol 1–8Google Scholar
  16. 16.
    Hardell L, Carlberg M, Hansson Mild K (2013) Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. Pathophysiology 20:85–110CrossRefPubMedGoogle Scholar
  17. 17.
    Interphone Study Group (2011) Acoustic neuroma risk in relation to mobile telephone use: results of the Interphone international case–control study. Cancer Epidemiol 35:453–464CrossRefGoogle Scholar
  18. 18.
    Benson VS, Pirie K, Schuz J et al (2013) Mobile phone use and risk of brain neoplasms and other cancers: prospective study. Int J Epidemiol 42:792–802CrossRefPubMedGoogle Scholar
  19. 19.
    Coureau G, Bouvier G, Lebailly P et al (2014) Mobile phone use and brain tumours in the CERENAT case-control study. Occup Environ Med 71:514–522CrossRefPubMedGoogle Scholar
  20. 20.
    Baan R, Grosse Y, Lauby-Secretan B et al (2011) Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol 12:624–626CrossRefPubMedGoogle Scholar
  21. 21.
    Thomas S, Benke G, Dimitriadis C et al (2010) Use of mobile phones and changes in cognitive function in adolescents. Occup Environ Med 67:861–866CrossRefPubMedGoogle Scholar
  22. 22.
    Divan HA, Kheifets L, Obel C et al (2012) Cell phone use and behavioural problems in young children. J Epidemiol Commun Health 66:524–529CrossRefGoogle Scholar
  23. 23.
    Abramson MJ, Benke GP, Dimitriadis C et al (2009) Mobile telephone use is associated with changes in cognitive function in young adolescents. Bioelectromagnetics 30:678–686CrossRefPubMedGoogle Scholar
  24. 24.
    Havas M (2013) Radiation from wireless technology affects the blood, the heart, and the autonomic nervous system. Rev Environ Health 28:75–84CrossRefPubMedGoogle Scholar
  25. 25.
    Levitt BB, Lai H (2010) Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ Rev 18:369–395CrossRefGoogle Scholar
  26. 26.
    The World Health Organization (2005) Electromagnetic fields and public health. Electromagnetic hypersensitivity. Accessed 25 October 2015
  27. 27.
    Inyang I, Benke G, Mckenzie R et al (2008) Comparison of measuring instruments for radiofrequency radiation from mobile telephones in epidemiological studies: implications for exposure assessment. J Exposure Sci Environ Epidemiol 18:134–141CrossRefGoogle Scholar
  28. 28.
    Röösli M, Frei P, Bolte J et al (2010) Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol. Environ Health 9:23CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    van Deventer E, van Rongen E, Saunders R (2011) WHO research agenda for radiofrequency fields. Bioelectromagnetics 32:417–421CrossRefPubMedGoogle Scholar
  30. 30.
    Inyang I, Benke G, Morrissey J et al (2009) How well do adolescents recall use of mobile telephones? Results of a validation study. BMC Med Res Methodol 9:36CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Repacholi MH, Lerchl A, Röösli M et al (2012) Systematic review of wireless phone use and brain cancer and other head tumors. Bioelectromagnetics 33:187–206CrossRefPubMedGoogle Scholar
  32. 32.
    Frei P, Poulsen AH, Johansen C et al (2011) Use of mobile phones and risk of brain tumours: update of Danish cohort study. BMJ 343:d6387CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wiart J, Sarrebourse T, Varsier N et al (2014) Use of apps for collecting information for exposure assessment. Proc Joint Annual Meeting of the Bioelectromagnetics Society and European Bioelectromagnetics Association, CapeTown, South Africa, 8–13 June 2014Google Scholar
  34. 34.
    Goedhart G, Vrijheid M, Wiart J et al (2015) Using software-modified smartphones to validate self-reported mobile phone use inyoung people: a pilot study. Bioelectromagnetics. doi: 10.1002/bem.21931 PubMedGoogle Scholar
  35. 35.
    Tawkon (2014). Accessed 17 August 2014
  36. 36.
    Cellraid Products (2014). Accessed 12 January 2015
  37. 37.
    Berg G, Schuz J, Samkange-Zeeb F, Blettner M (2005) Assessment of radiofrequency exposure from cellular telephone daily use in an epidemiological study: German validation study of the international case–control study of cancers of the brain–Interphone–study. J Expo Anal Environ Epidemiol 15:217–224CrossRefPubMedGoogle Scholar
  38. 38.
    Vrijheid M, Mann S, Vecchia P et al (2009) Determinants of mobile phone output power in a multinational study: implications for exposure assessment. Occup Environ Med 66:664–671CrossRefPubMedGoogle Scholar
  39. 39.
    Inyang I, Benke G, McKenzie R et al (2009) Use of hardware modified phones for exposure assessment in health studies in Australia: verification of compliance with standards. Australas Phys Eng Sci Med 32:62–67CrossRefPubMedGoogle Scholar
  40. 40.
    SATIMO (2014) Microwave Vision Group (Courtaboeuf, France). Accessed 12 November 2014
  41. 41.
    Maschek Electronik (2014) Maschek Electronik (Bad Wörishofen, Germany). Accessed 12 November 2014
  42. 42.
    Narda Safety Test Solutions (2014) Narda Safety Test Solutions (New York, USA). Accessed 12 November 2014
  43. 43.
    Introducing ExpoM—A personal RF exposure meter (2014) Fields at Work GmbH (Zürich, Switzerland). Accessed 12 November 2014
  44. 44.
    Thielens A, De Clercq H, Agneessens S et al (2013) Personal distributed exposimeter for radio frequency exposure assessment in real environments. Bioelectromagnetics 34:563–567CrossRefPubMedGoogle Scholar
  45. 45.
    Thielens A, Vanveerdeghem P, Agneessens S et al. (2014) Whole-body Averaged SAR Assessment Using a Personal, Distributed Exposimeter. Proceedings of Joint Annual Meeting of the Bioelectromagnetics Society and European Bioelectromagnetics Association CapeTown, South Africa, 8–13 June 2014Google Scholar
  46. 46.
    Urbinello D, Huss A, Beekhuizen J et al (2014) Use of portable exposure meters for comparing mobile phone base station radiation in different types of areas in the cities of Basel and Amsterdam. Sci Total Environ 468–469:1028–1033CrossRefPubMedGoogle Scholar
  47. 47.
    Urbinello D, Röösli M (2013) Impact of one’s own mobile phone in stand-by mode on personal radiofrequency electromagnetic field exposure. J Expo Sci Environ Epidemiol 23:545–548CrossRefPubMedGoogle Scholar
  48. 48.
    Juhász P, Bakos J, Nagy N et al (2011) RF personal exposimetry on employees of elementary schools, kindergartens and day nurseries as a proxy for child exposures. Prog Biophys Mol Biol 107:449–455CrossRefPubMedGoogle Scholar
  49. 49.
    Thomas S, Kuhnlein A, Heinrich S et al (2008) Personal exposure to mobile phone frequencies and well-being in adults: a cross-sectional study based on dosimetry. Bioelectromagnetics 29:463–470CrossRefPubMedGoogle Scholar
  50. 50.
    Cooper TG, Allen SG, Blackwell RP et al (2004) Assessment of occupational exposure to radiofrequency fields and radiation. Radiat Prot Dosimetry 111:191–203CrossRefPubMedGoogle Scholar
  51. 51.
    Chauvin S, Gibergues ML, Wuthrich G et al (2009) Occupational exposure to ambient electromagnetic fields of technical operational personnel working for a mobile telephone operator. Radiat Prot Dosimetry 136:185–195CrossRefPubMedGoogle Scholar
  52. 52.
    Roser K, Schoeni A, Bürgi A et al (2015) Development of an RF-EMF exposure surrogate for epidemiologic research. Int J Environ Res Public Health 12:5634–5656CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Thielens A, Agneessens S, De Clercq H et al (2015) On-body calibration and measurements using a personal, distributed exposimeter for wireless fidelity. Health Phys 108:407–418CrossRefPubMedGoogle Scholar
  54. 54.
    Röösli M and Vienneau D (2014) Epidemiology of electromagnetic fields. In: Röösli M (ed). Epidemiological exposure assessment. CRC Press Taylor & Francis Company, pp 35–55Google Scholar
  55. 55.
    Lin JC (2007) Dosimetric comparasion between different quantities for limiting exposure in the RF band: rationale and implications for guidelines. Health Phys 92:547–553CrossRefPubMedGoogle Scholar
  56. 56.
    Gati A, Conil E, Wong M-F, Wiart J (2010) Duality between uplink local and downlink whole-body exposures in operating networks. IEEE Trans Electromagn Compat 52:829–836CrossRefGoogle Scholar
  57. 57.
    Frei P, Mohler E, Bürgi A et al (2010) Classification of personal exposure to radio frequency electromagnetic fields (RF-EMF) for epidemiological research: evaluation of different exposure assessment methods. Environ Int 36:714–720CrossRefPubMedGoogle Scholar
  58. 58.
    Joseph W, Frei P, Röösli M et al (2012) Between-country comparison of whole-body SAR from personal exposure data in Urban areas. Bioelectromagnetics 33:682–694CrossRefPubMedGoogle Scholar
  59. 59.
    Pearson S, Benameur A (2010) Privacy, security and trust issues arising from cloud Computing. Proceedings of cloud computing technology and science (CloudCom) 2010 IEEE 2nd international conference, Indianapolis, 30 November–3 December 2010Google Scholar
  60. 60.
    Ardoino L, Barbieri E, Vecchia P (2004) Determinants of exposure to electromagnetic fields from mobile phones. Radiat Prot Dosim 111:403–406CrossRefGoogle Scholar
  61. 61.
    Vrijheid M, Cardis E, Armstrong BK et al (2006) Validation of short term recall of mobile phone use for the Interphone study. Occup Environ Med 63:237–243CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Erdreich LS, Van Kerkhove MD, Scrafford CG et al (2007) Factors that influence the radiofrequency power output of GSM mobile phones. Radiat Res 168:253–261CrossRefPubMedGoogle Scholar
  63. 63.
    Kelsh MA, Shum M, Sheppard AR et al (2011) Measured radiofrequency exposure during various mobile-phone use scenarios. J Expo Sci Environ Epidemiol 21:343–354CrossRefPubMedGoogle Scholar
  64. 64.
    Inyang I, Benke G, McKenzie R et al (2010) A new method to determine laterality of mobile telephone use in adolescents. Occup Environ Med 67:507–512CrossRefPubMedGoogle Scholar
  65. 65.
    Thomas S, Kühnlein A, Heinrich S et al (2008) Exposure to mobile telecommunication networks assessed using personal dosimetry and well-being in children and adolescents: the German MobilEe-study. Environ Health 7:55CrossRefGoogle Scholar
  66. 66.
    Neubauer G, Cecil S, Giczi W et al (2008) Final Report on the project C2006-07: evaluation of the correlation between RF dosimeter reading and real human exposure ARC-IT-0218. Accessed 12 December 2014
  67. 67.
    Joseph W, Goeminne F, Vermeeren G et al (2012) Occupational and public field exposure from communication, navigation, and radar systems used for air traffic control. Health Phys 103:750–762CrossRefPubMedGoogle Scholar
  68. 68.
    Singh S, Kapoor N (2015) Occupational EMF exposure from radar at X and Ku frequency band and plasma catecholamine levels. Bioelectromagnetics. doi: 10.1002/bem.21925 PubMedGoogle Scholar
  69. 69.
    Bergqvist U, Friedrich G, Hamnerius Y, et al (2000) Mobile telecommunication base stations–exposure to electromagnetic fields. Report of a short term mission within COST-244bisGoogle Scholar
  70. 70.
    Jokela K, Puranen L, Sihvonen AP (2004) Assessment of the magnetic field exposure due to the battery current of digital mobile phones. Health Phys 86:56–66CrossRefPubMedGoogle Scholar
  71. 71.
    Calderón C, Addison D, Mee T et al (2014) Assessment of extremely low frequency magnetic field exposure from GSM mobile phones. Bioelectromagnetics 35:210–221CrossRefPubMedGoogle Scholar
  72. 72.
    Redmayne M, Inyang I, Dimitriadis C et al (2010) Cordless telephone use: implications for mobile phone research. J Environ Monit 12:809–812CrossRefPubMedGoogle Scholar
  73. 73.
    Guxens M, van Eijsden M, Vermeulen R et al (2013) Maternal cell phone and cordless phone use during pregnancy and behaviour problems in 5-year-old children. J Epidemiol Community Health 67:432–438CrossRefPubMedGoogle Scholar
  74. 74.
    Röösli M, Frei P, Mohler E et al (2008) Statistical analysis of personal radiofrequency electromagnetic field measurements with nondetects. Bioelectromagnetics 29:471–478CrossRefPubMedGoogle Scholar
  75. 75.
    Bolte JF, van der Zande G, Kamer J (2011) Calibration and uncertainties in personal exposure measurements of radiofrequency electromagnetic fields. Bioelectromagnetics 32:652–663CrossRefPubMedGoogle Scholar
  76. 76.
    Iskra S, McKenzie RJ, Cosic I (2011) Monte Carlo simulations of the electric field close to the body in realistic environments for application in personal radiofrequency dosimetry. Radiat Prot Dosimetry 147:517–527CrossRefPubMedGoogle Scholar
  77. 77.
    Iskra S, McKenzie RJ, Cosic I (2010) Factors influencing uncertainty in measurement of electric fields close to the body in personal RF dosimetry. Radiat Prot Dosimetry 140:25–33CrossRefPubMedGoogle Scholar
  78. 78.
    Knafl U, Lehmann H, Riederer M (2008) Electromagnetic field measurements using personal exposimeters. Bioelectromagnetics 29:160–162CrossRefPubMedGoogle Scholar
  79. 79.
    Mann S (2010) Assessing personal exposures to environmental radiofrequency electromagnetic fields. CR Phys 11:541–555CrossRefGoogle Scholar
  80. 80.
    Thielens A, Agneessens S, Verloock L et al (2015) On-body calibration and processing for a combination of two radio-frequency personal exposimeters. Radiat Prot Dosimetry 163:58–69CrossRefPubMedGoogle Scholar
  81. 81.
    Beekhuizen J, Vermeulen R, van Eijsden M et al (2014) Modelling indoor electromagnetic fields (EMF) from mobile phone base stations for epidemiological studies. Environ Int 67:22–26CrossRefPubMedGoogle Scholar
  82. 82.
    Joseph W, Vermeeren G, Verloock L et al (2010) Estimation of whole-body SAR from electromagnetic fields using personal exposure meters. Bioelectromagnetics 31:286–295CrossRefPubMedGoogle Scholar
  83. 83.
    Lauer O, Frei P, Gosselin MC et al (2013) Combining near- and far-field exposure for an organ-specific and whole-body RF-EMF proxy for epidemiological research: a reference case. Bioelectromagnetics 34:366–374CrossRefPubMedGoogle Scholar
  84. 84.
    Iskra S, McKenzie R, Cosic I (2009) Absorption in human body at 900 MHz for oblique incidence of plane wave. Electron Lett 45:602–604CrossRefGoogle Scholar
  85. 85.
    Henderson S, Tjong L, Wijayasinghe D (2014) Survey of radiofrequency radiation levels across Melbourne. Proceedings of the 39th Australasian Radiation Protection Society Conference, Hobart, 26–29 June 2014Google Scholar
  86. 86.
    Dürrenberger G, Fröhlich J, Röösli M et al (2014) EMF monitoring–concepts, activities, gaps and options. Int J Environ Res Public Health 11:9460–9479CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2015

Authors and Affiliations

  • Chhavi Raj Bhatt
    • 1
    Email author
  • Mary Redmayne
    • 1
  • Michael J. Abramson
    • 1
  • Geza Benke
    • 1
  1. 1.Centre for Population Health Research on Electromagnetic Energy (PRESEE), School of Public Health and Preventive MedicineMonash University, The Alfred CentreVictoriaAustralia

Personalised recommendations