The relationship between interfragmentary movement and cell differentiation in early fracture healing under locking plate fixation

  • Saeed MiraminiEmail author
  • Lihai Zhang
  • Martin Richardson
  • Priyan Mendis
  • Adekunle Oloyede
  • Peter Ebeling
Scientific Paper


Interfragmentary movement (IFM) at the fracture site plays an important role in fracture healing, particularly during its early stage, via influencing the mechanical microenvironment of mesenchymal stem cells within the fracture callus. However, the effect of changes in IFM resulting from the changes in the configuration of locking plate fixation on cell differentiation has not yet been fully understood. In this study, mechanical experiments on surrogate tibia specimens, manufactured from specially formulated polyurethane, were conducted to investigate changes in IFM of fractures under various locking plate fixation configurations and loading magnitudes. The effect of the observed IFM on callus cell differentiation was then further studied using computational simulation. We found that during the early stage, cell differentiation in the fracture callus is highly influenced by fracture gap size and IFM, which in turn, is highly sensitive to locking plate fixation configuration. The computational model predicted that a small gap size (e.g. 1 mm) under a relatively flexible configuration of locking plate fixation (larger bone-plate distances and working lengths) could experience excessive strain and fluid flow within the fracture site, resulting in excessive fibrous tissue differentiation and delayed healing. By contrast, a relatively flexible configuration of locking plate fixation was predicted to improve cartilaginous callus formation and bone healing for a relatively larger gap size (e.g. 3 mm). If further confirmed by animal and human studies, the research outcome of this paper may have implications for orthopaedic surgeons in optimising the application of locking plate fixations for fractures in clinical practice.


Fracture healing Mesenchymal stem cell differentiation Locking plate fixation Mechanical testing Computational simulation Osteoporosis 



The authors would like to thank AOTRAUMA Asia Pacific (AOTAP14-02), DePuy Synthes, Victorian Orthopaedic Research Trust (2014–2015), Epworth HealthCare and the University of Melbourne for their support.


  1. 1.
    Pape H-C, Bottlang M (2011) Flexible fixation with locking plates. J Orthop Trauma 25:S1–S3CrossRefPubMedGoogle Scholar
  2. 2.
    Wu J-J, Shyr H, Chao E, Kelly P (1984) Comparison of osteotomy healing under external fixation devices with different stiffness characteristics. J Bone Joint Surg Am 66(8):1258–1264PubMedGoogle Scholar
  3. 3.
    Goodship AE, Kenwright J (1985) The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br 67(4):650–655PubMedGoogle Scholar
  4. 4.
    Claes L, Augat P, Suger G, Wilke HJ (1997) Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15(4):577–584CrossRefPubMedGoogle Scholar
  5. 5.
    LE Claes, Wilke HJ, Augat P, Rubenacker S, Margevicius KJ (1995) Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin Biomech (Bristol, Avon) 10(5):227–234CrossRefGoogle Scholar
  6. 6.
    Bottlang M, Feist F (2011) Biomechanics of far cortical locking. J Orthop Trauma 25(Suppl 1):S21CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Augat P, Simon U, Liedert A, Claes L (2005) Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int 16(2):S36–S43CrossRefPubMedGoogle Scholar
  8. 8.
    Perren S (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res 138:175–196PubMedGoogle Scholar
  9. 9.
    Claes L (2011) Biomechanical principles and mechanobiologic aspects of flexible and locked plating. J Orthop Trauma 25:S4–S7CrossRefPubMedGoogle Scholar
  10. 10.
    Haidukewych GJ, Ricci W (2008) Locked plating in orthopaedic trauma: a clinical update. J Am Acad Orthop Surg 16(6):347–355CrossRefPubMedGoogle Scholar
  11. 11.
    Perren SM (2002) Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br 84(8):1093–1110CrossRefPubMedGoogle Scholar
  12. 12.
    Egol KA, Kubiak EN, Fulkerson E, Kummer FJ, Koval KJ (2004) Biomechanics of locked plates and screws. J Orthop Trauma 18(8):488–493CrossRefPubMedGoogle Scholar
  13. 13.
    Kubiak EN, Fulkerson E, Strauss E, Egol KA (2006) The evolution of locked plates. J Bone Joint Surg Am 88(Suppl 4):189–200. doi: 10.2106/JBJS.F.00703 CrossRefPubMedGoogle Scholar
  14. 14.
    Strauss EJ, Schwarzkopf R, Kummer F, Egol KA (2008) The current status of locked plating: the good, the bad, and the ugly. J Orthop Trauma 22(7):479–486CrossRefPubMedGoogle Scholar
  15. 15.
    Henderson CE, Bottlang M, Marsh JL, Fitzpatrick DC, Madey SM (2008) Does locked plating of periprosthetic supracondylar femur fractures promote bone healing by callus formation? Two cases with opposite outcomes. Iowa Orthop J 28:73PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lujan TJ, Henderson CE, Madey SM, Fitzpatrick DC, Marsh JL, Bottlang M (2010) Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation. J Orthop Trauma 24(3):156–162CrossRefPubMedGoogle Scholar
  17. 17.
    Miramini S, Zhang L, Richardson M, Pirpiris M, Mendis P, Oloyede K, Edwards G (2015) Computational simulation of the early stage of bone healing under different locking compression plate configurations. Comput Methods Biomech Biomed Eng 18(8):900–913CrossRefGoogle Scholar
  18. 18.
    Miramini S, Zhang L, Richardson M, Mendis P (2014) Computational simulation of mechanical microenvironment of early stage of bone healing under locking compression plate with dynamic locking screws. Appl Mech Mater 553:281–286CrossRefGoogle Scholar
  19. 19.
    Zhang L, Miramini S, Mendis P, Richardson M, Pirpiris M, Oloyede K (2013) The effects of flexible fixation on early stage bone fracture healing. Int J Aerosp Lightweight Struct 3(2):181–189CrossRefGoogle Scholar
  20. 20.
    Thompson Z, Miclau T, Hu D, Helms JA (2002) A model for intramembranous ossification during fracture healing. J Orthop Res 20(5):1091–1098CrossRefPubMedGoogle Scholar
  21. 21.
    Klein P, Schell H, Streitparth F, Heller M, Kassi JP, Kandziora F, Bragulla H, Haas NP, Duda GN (2003) The initial phase of fracture healing is specifically sensitive to mechanical conditions. J Orthop Res 21(4):662–669CrossRefPubMedGoogle Scholar
  22. 22.
    Le A, Miclau T, Hu D, Helms J (2001) Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res 19(1):78–84CrossRefPubMedGoogle Scholar
  23. 23.
    Epari, Taylor WR, Heller MO, Duda GN (2006) Mechanical conditions in the initial phase of bone healing. Clin Biomech (Bristol, Avon) 21(6):646–655. doi: 10.1016/j.clinbiomech.2006.01.003 CrossRefGoogle Scholar
  24. 24.
    Kenwright J, Goodship AE (1989) Controlled mechanical stimulation in the treatment of tibial fractures. Clin Orthop Relat Res 241:36–47PubMedGoogle Scholar
  25. 25.
    Goodship AE, Cunningham JL, Kenwright J (1998) Strain rate and timing of stimulation in mechanical modulation of fracture healing. Clin Orthop Relat Res 355:S105–S115CrossRefPubMedGoogle Scholar
  26. 26.
    Augat P, Margevicius K, Simon J, Wolf S, Suger G, Claes L (1998) Local tissue properties in bone healing: influence of size and stability of the osteotomy gap. J Orthop Res 16(4):475–481CrossRefPubMedGoogle Scholar
  27. 27.
    Gautier E, Sommer C (2003) Guidelines for the clinical application of the LCP. Injury 34:63–76CrossRefGoogle Scholar
  28. 28.
    Duda GN, Mandruzzato F, Heller M, Kassi JP, Khodadadyan C, Haas NP (2002) Mechanical conditions in the internal stabilization of proximal tibial defects. Clin Biomech (Bristol, Avon) 17(1):64–72CrossRefGoogle Scholar
  29. 29.
    Bottlang M, Doornink J, Fitzpatrick DC, Madey SM (2009) Far Cortical Locking Can Reduce Stiffness of Locked Plating Constructs While Retaining Construct Strength. J Bone Joint Surg Am 91a(8):1985–1994. doi: 10.2106/Jbjs.H.01038 CrossRefGoogle Scholar
  30. 30.
    Döbele S, Horn C, Eichhorn S, Buchholtz A, Lenich A, Burgkart R, Nüssler AK, Lucke M, Andermatt D, Koch R (2010) The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. Langenbeck’s Arch Surg 395(4):421–428CrossRefGoogle Scholar
  31. 31.
    Amano R, Sundén B (2011) Computational fluid dynamics and heat transfer: emerging topics, vol 23. WIT Press, BillericaGoogle Scholar
  32. 32.
    Fazi G, Tellini S, Vangi D, Branchi R (2010) Three-dimensional finite element analysis of different implant configurations for a mandibular fixed prosthesis. Int J Oral Maxillofac Implant 26(4):752–759Google Scholar
  33. 33.
    Cepeda J, Birla S, Subbiah J, Thippareddi HA (2013) Practical method to model complex three-dimensional geometries with non-uniform material properties using image-based design and COMSOL Multiphysics®. In: COMSOL conference, BostonGoogle Scholar
  34. 34.
    Mimics (2011). vol 14.11. Materialise, Haasrode, BelgiumGoogle Scholar
  35. 35.
    Horn C, Doebele S, Vester H, Schaeffler A, Lucke M, Stoeckle U (2011) Combination of interfragmentary screws and locking plates in distal meta-diaphyseal fractures of the tibia: a retrospective, single-centre pilot study. Injury 42(10):1031–1037CrossRefPubMedGoogle Scholar
  36. 36.
    Biot MA (2004) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164CrossRefGoogle Scholar
  37. 37.
    Terzaghi K (1943) Theoretical soil mechanics. Wiley, New YorkCrossRefGoogle Scholar
  38. 38.
    Oloyede A, Broom N (1991) Is classical consolidation theory applicable to articular cartilage deformation? Clin Biomech 6(4):206–212CrossRefGoogle Scholar
  39. 39.
    Mow V, Kuei S, Lai W, Armstrong C (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102(1):73–84CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang L, Miramini S, Gardiner BS, Smith DW, Grodzinsky AJ (2015) Time evolution of deformation in a human cartilage under cyclic loading. Ann Biomed Eng 43(5):1166–1177CrossRefPubMedGoogle Scholar
  41. 41.
    Lacroix D, Prendergast P (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35(9):1163–1171CrossRefPubMedGoogle Scholar
  42. 42.
    Prendergast P, Huiskes R, Søballe K (1997) Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30(6):539–548CrossRefPubMedGoogle Scholar
  43. 43.
    Huiskes R, Van Driel W, Prendergast P, Søballe K (1997) A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J Mater Sci Mater Med 8(12):785–788CrossRefPubMedGoogle Scholar
  44. 44.
    Isaksson H, van Donkelaar CC, Huiskes R, Ito K (2006) Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. J Orthop Res 24(5):898–907CrossRefPubMedGoogle Scholar
  45. 45.
    Claes L, Reusch M, Göckelmann M, Ohnmacht M, Wehner T, Amling M, Beil FT, Ignatius A (2011) Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing. J Orthop Res 29(3):425–432CrossRefPubMedGoogle Scholar
  46. 46.
    Woo S, Lothringer K, Akeson W, Coutts R, Woo Y, Simon B, Gomez M (1983) Less rigid internal fixation plates: historical perspectives and new concepts. J Orthop Res 1(4):431–449CrossRefGoogle Scholar
  47. 47.
    McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg Br 60-B(2):150–162PubMedGoogle Scholar
  48. 48.
    Perren SM (2008) Fracture healing. The evolution of our understanding. Acta Chir Orthop Traumatol Cech 75(4):241PubMedGoogle Scholar
  49. 49.
    McCartney W, Mac Donald BJ, Hashmi MSJ (2005) Comparative performance of a flexible fixation implant to a rigid implant in static and repetitive incremental loading. J Materials Process Technol 169(3):476–484. doi: 10.1016/j.jmatprotec.2005.04.104 CrossRefGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2015

Authors and Affiliations

  1. 1.Department of Infrastructure EngineeringThe University of MelbourneParkvilleAustralia
  2. 2.The Epworth HospitalRichmondAustralia
  3. 3.Biomedical Engineering and Medical PhysicsQueensland University of TechnologyBrisbaneAustralia
  4. 4.Department of MedicineMonash UniversityClaytonAustralia

Personalised recommendations