Use of electronic portal imaging devices for electron treatment verification

  • T. KairnEmail author
  • T. Aland
  • S. B. Crowe
  • J. V. Trapp
Scientific Note


This study aims to help broaden the use of electronic portal imaging devices (EPIDs) for pre-treatment patient positioning verification, from photon-beam radiotherapy to photon- and electron-beam radiotherapy, by proposing and testing a method for acquiring clinically-useful EPID images of patient anatomy using electron beams, with a view to enabling and encouraging further research in this area. EPID images used in this study were acquired using all available beams from a linac configured to deliver electron beams with nominal energies of 6, 9, 12, 16 and 20 MeV, as well as photon beams with nominal energies of 6 and 10 MV. A widely-available heterogeneous, approximately-humanoid, thorax phantom was used, to provide an indication of the contrast and noise produced when imaging different types of tissue with comparatively realistic thicknesses. The acquired images were automatically calibrated, corrected for the effects of variations in the sensitivity of individual photodiodes, using a flood field image. For electron beam imaging, flood field EPID calibration images were acquired with and without the placement of blocks of water-equivalent plastic (with thicknesses approximately equal to the practical range of electrons in the plastic) placed upstream of the EPID, to filter out the primary electron beam, leaving only the bremsstrahlung photon signal. While the electron beam images acquired using a standard (unfiltered) flood field calibration were observed to be noisy and difficult to interpret, the electron beam images acquired using the filtered flood field calibration showed tissues and bony anatomy with levels of contrast and noise that were similar to the contrast and noise levels seen in the clinically acceptable photon beam EPID images. The best electron beam imaging results (highest contrast, signal-to-noise and contrast-to-noise ratios) were achieved when the images were acquired using the higher energy electron beams (16 and 20 MeV) when the EPID was calibrated using an intermediate (12 MeV) electron beam energy. These results demonstrate the feasibility of acquiring clinically-useful EPID images of patient anatomy using electron beams and suggest important avenues for future investigation, thus enabling and encouraging further research in this area. There is manifest potential for the EPID imaging method proposed in this work to lead to the clinical use of electron beam imaging for geometric verification of electron treatments in the future.


Electrons Portal imaging Radiation therapy 



The authors wish to acknowledge the valued contributions of the following participants at the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) Queensland Branch 2014 Winter School on Scientific Publication: Jacqueline Charles, Paul Charles, Allison Fox, Robin Hill, Benjamin Harris, Emma Inness, Vaughan Moutrie, Zoë Moutrie, Patrick O’Connor, Bess Sutherland, Steven Sylvander, Luke Webb, Rachael Wilks and Nancy Yu. This work was supported by the Australian Research Council, the Wesley Research Institute, Premion (Genesis Cancer Care Queensland) and the Queensland University of Technology (QUT), through linkage Grant Number LP110100401.


  1. 1.
    El-Gayed AA, Bel A, Vijlbrief R, Bartelink H, Lebesque JV (1993) Time trend of patient setup deviations during pelvic irradiation using electronic portal imaging. Radiother Oncol 26(2):162–171CrossRefPubMedGoogle Scholar
  2. 2.
    The Royal Australian and New Zealand College of Radiologists, Faculty of Radiation Oncology Position Paper: Techniques and Technologies in Radiation Oncology (2012) Horizon Scan Australia, RANZCRGoogle Scholar
  3. 3.
    Bridge P, Carmichael MA, Brady C, Dry A (2013) A snapshot of radiation therapy techniques and technology in Queensland: an aid to mapping undergraduate curriculum. J Med Radiat Sci 60(1):25–34CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Boyer AL, Antonuk L, Fenster A, Van Herk M, Meertens H, Munro P, Reinstein LE, Wong J (1992) A review of electronic portal imaging devices (EPIDs). Med Phys 19(1):1–16CrossRefPubMedGoogle Scholar
  5. 5.
    McDermott LN, Nijsten SMJJG, Sonke JJ, Partridge M, Van Herk M, Mijnheer BJ (2006) Comparison of ghosting effects for three commercial a-Si EPIDs. Med Phys 33(7):2448–2451CrossRefPubMedGoogle Scholar
  6. 6.
    Greer PB, Popescu CC (2003) Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy. Med Phys 30(7):1618–1627CrossRefPubMedGoogle Scholar
  7. 7.
    Flampouri S, McNair HA, Donovan EM, Evans PM, Partridge M, Verhaegen F, Nutting CM (2005) Initial patient imaging with an optimised radiotherapy beam for portal imaging. Radiother Oncol 76(1):63–71CrossRefPubMedGoogle Scholar
  8. 8.
    Kairn T, Khoei S, Markwell TS, Fielding AL, Trapp JV (2010) Contrast enhancement of EPID images via difference imaging: a feasibility study. Phys Med Biol 55(22):N533–N544CrossRefPubMedGoogle Scholar
  9. 9.
    Pouliot J, Bani-Hashemi A, Chen J, Svatos M, Ghelmansarai F, Mitschke M, Aubin M, Xia P, Morin O, Bucci K, Roach M III, Hernandez P, Zheng Z, Hristov D, Verhey L (2005) Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys 61(2):552–560CrossRefPubMedGoogle Scholar
  10. 10.
    Hansen EK, Larson DA, Aubin M, Chen J, Descovich M, Gillis AM, Morin O, Xia P, Pouliot J (2006) Image-guided radiotherapy using megavoltage cone-beam computed tomography for treatment of paraspinous tumors in the presence of orthopedic hardware. Int J Radiat Oncol Biol Phys 66(2):323–326CrossRefPubMedGoogle Scholar
  11. 11.
    Markwell T, Perera L, Trapp J, Fielding A (2014) Evaluation of MegaVoltage Cone Beam CT image quality with an unmodified Elekta Precise Linac and EPID: a feasibility study. Australas Phys Eng Sci Med 37(2):291–302CrossRefPubMedGoogle Scholar
  12. 12.
    Moutrie V, Kairn T, Rosenfeld A, Charles PH (2015) Use of a megavoltage electronic portal imaging device to identify prosthetic materials. Australas Phys Eng Sci Med 38(1):93–100CrossRefPubMedGoogle Scholar
  13. 13.
    Liu G, Van Doorn T, Bezak E (2002) Assessment of flatness and symmetry of megavoltage X-ray beam with an electronic portal imaging device (EPID). Australas Phys Eng Sci Med 25(2):58–66CrossRefPubMedGoogle Scholar
  14. 14.
    Budgell GJ, Zhang R, Mackay RI (2007) Daily monitoring of linear accelerator beam parameters using an amorphous silicon EPID. Phys Med Biol 52(6):1721–1733CrossRefPubMedGoogle Scholar
  15. 15.
    Clivio A, Vanetti E, Rose S, Nicolini G, Belosi MF, Cozzi L, Baltes C, Fogliata A (2015) Evaluation of the machine performance check application for TrueBeam Linac. Radiat Oncol 10(1):97CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wendling M, Louwe RJ, McDermott LN, Sonke JJ, van Herk M, Mijnheer BJ (2006) Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method. Med Phys 33(2):259–273CrossRefPubMedGoogle Scholar
  17. 17.
    Warkentin B, Steciw S, Rathee S, Fallone BG (2003) Dosimetric IMRT verification with a flat-panel EPID. Med Phys 30(12):3143–3155CrossRefPubMedGoogle Scholar
  18. 18.
    Van Esch A, Depuydt T, Huyskens DP (2004) The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields. Radiother Oncol 71(2):223–234CrossRefPubMedGoogle Scholar
  19. 19.
    Nicolini G, Fogliata A, Vanetti E, Clivio A, Cozzi L (2006) GLAaS: an absolute dose calibration algorithm for an amorphous silicon portal imager. Applications to IMRT verifications. Med Phys 33(8):2839–2851CrossRefPubMedGoogle Scholar
  20. 20.
    Nicolini G, Vanetti E, Clivio A, Fogliata A, Korreman S, Bocanek J, Cozzi L (2008) The GLAaS algorithm for portal dosimetry and quality assurance of RapidArc, an intensity modulated rotational therapy. Radiat Oncol 3:24CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee C, Menk F, Cadman P, Greer PB (2009) A simple approach to using an amorphous silicon EPID to verify IMRT planar dose maps. Med Phys 36(3):984–992CrossRefPubMedGoogle Scholar
  22. 22.
    Mans A, Wendling M, McDermott LN, Sonke JJ, Tielenburg R, Vijlbrief R, Mijnheer B, Van Herk M, Stroom JC (2010) Catching errors with in vivo EPID dosimetry. Med Phys 37(6):2638–2644CrossRefPubMedGoogle Scholar
  23. 23.
    Mijnheer B, Mans A, Olaciregui-Ruiz I, Sonke JJ, Tielenburg R, Van Herk M, Vijlbrief R, Stroom J (2010) 2D AND 3D dose verification at The Netherlands Cancer InstituteAntoni van Leeuwenhoek Hospital using EPIDs. J Phys Conf Ser 250(1):012020CrossRefGoogle Scholar
  24. 24.
    van Elmpt W, McDermott L, Nijsten S, Wendling M, Lambin P, Mijnheer B (2008) A literature review of electronic portal imaging for radiotherapy dosimetry. Radiother Oncol 88(3):289–309CrossRefPubMedGoogle Scholar
  25. 25.
    Kairn T, Cassidy D, Sandford PM, Fielding AL (2008) Radiotherapy treatment verification using radiological thickness measured with an amorphous silicon electronic portal imaging device: Monte Carlo simulation and experiment. Phys Med Biol 53(14):3903–3919CrossRefPubMedGoogle Scholar
  26. 26.
    Kavuma A, Glegg M, Metwaly M, Currie G, Elliott A (2010) A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device. Phys Med Biol 55(2):435–452CrossRefPubMedGoogle Scholar
  27. 27.
    Kairn T, Crowe SB, Trapp JV (2012) A simple method for EPID-based in vivo dosimetry for radiotherapy treatments of head-and-neck cancers. IFMBE Proc 39:1727–1730CrossRefGoogle Scholar
  28. 28.
    Beck JA, Budgell GJ, Roberts DA, Evans PM (2009) Electron beam quality control using an amorphous silicon EPID. Med Phys 36(5):1859–1866CrossRefPubMedGoogle Scholar
  29. 29.
    Wang Y, Heaton R, Norrlinger B, Islam M (2013) Quality assurance of electron beams using a Varian electronic portal imaging device. Phys Med Biol 58(16):5461–5475CrossRefPubMedGoogle Scholar
  30. 30.
    Emam I, Fan J, Jin L, El Dib A, Ma C (2009) SU-FF-T-307: a multileaf collimator quality assurance tool for modulated electron radiation therapy. Med Phys 36(6):2592CrossRefGoogle Scholar
  31. 31.
    Gauer T, Engel K, Kiesel A, Albers D, Rades D (2010) Comparison of electron IMRT to helical photon IMRT and conventional photon irradiation for treatment of breast and chest wall tumours. Radiother Oncol 94(3):313–318CrossRefPubMedGoogle Scholar
  32. 32.
    Jarry G, Verhaegen F (2005) Electron beam treatment verification using measured and Monte Carlo predicted portal images. Phys Med Biol 50(21):4977–4994CrossRefPubMedGoogle Scholar
  33. 33.
    Aubin M, Faddegon B, Pouliot J (2002) Electron beam verification with an a-Si flat-panel electronic portal imaging device. Proc SPIE 4682:549–557CrossRefGoogle Scholar
  34. 34.
    Shank B, Moughan J, Owen J, Wilson F, Hanks GE (2000) The 199394 patterns of care process survey for breast irradiation after breast-conserving surgerycomparison with the 1992 standard for breast conservation treatment. Int J Radiat Oncol Biol Phys 48(5):1291–1299CrossRefPubMedGoogle Scholar
  35. 35.
    IAEA (2004) Technical Reports Series 430. Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer. International Atomic Energy Agency, ViennaGoogle Scholar
  36. 36.
    IAEA (2008) TECDOC 1583. Commissioning of radiotherapy treatment planning systems: testing for typical external beam treatment techniques. International Atomic Energy Agency, ViennaGoogle Scholar
  37. 37.
    Louwe RJ, McDermott LN, Sonke JJ, Tielenburg R, Wendling M, Van Herk MB, Mijnheer BJ (2004) The long-term stability of amorphous silicon flat panel imaging devices for dosimetry purposes. Med Phys 31(11):2989–2995CrossRefPubMedGoogle Scholar
  38. 38.
    Ding GX, Rogers DWO, Mackie TR (1996) Mean energy, energy-range relationships and depth-scaling factors for clinical electron beams. Med Phys 23(3):361–376CrossRefPubMedGoogle Scholar
  39. 39.
    Faddegon B, Schreiber E, Ding X (2005) Monte Carlo simulation of large electron fields. Phys Med Biol 50(5):741–753CrossRefPubMedGoogle Scholar
  40. 40.
    Mooslechner M, Mitterlechner B, Weichenberger H, Huber S, Sedlmayer F, Deutschmann H (2013) Analysis of a free-running synchronization artifact correction for MV-imaging with aSi: H flat panels. Med Phys 40(3):031906CrossRefPubMedGoogle Scholar
  41. 41.
    Woodruff HC, Greer PB (2013) 3D Dose reconstruction: banding artefacts in cine mode EPID images during VMAT delivery. J Phys Conf Ser 444:012042CrossRefGoogle Scholar
  42. 42.
    Herman MG, Balter JM, Jaffray DA, McGee KP, Munro P, Shalev S, Van Herk M, Wong JD (2001) Clinical use of electronic portal imaging: Report of AAPM Radiation Therapy Committee Task Group 58. Med Phys 28(5):712–737CrossRefPubMedGoogle Scholar
  43. 43.
    Rowshanfarzad P, McCurdy BM, Sabet M, Lee C, OConnor DJ, Greer PB (2010) Measurement and modeling of the effect of support arm backscatter on dosimetry with a Varian EPID. Med Phys 37(5):2269–2278CrossRefPubMedGoogle Scholar
  44. 44.
    Kirkby C, Sloboda R (2005) Consequences of the spectral response of an a-Si EPID and implications for dosimetric calibration. Med Phys 32(8):2649–2658CrossRefPubMedGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2015

Authors and Affiliations

  • T. Kairn
    • 1
    • 2
    Email author
  • T. Aland
    • 1
    • 2
  • S. B. Crowe
    • 2
    • 3
  • J. V. Trapp
    • 2
  1. 1.Genesis Cancer Care QueenslandBrisbaneAustralia
  2. 2.Science and Engineering FacultyQueensland University of TechnologyBrisbaneAustralia
  3. 3.Cancer Care ServicesRoyal Brisbane and Women’s HospitalBrisbaneAustralia

Personalised recommendations