Skip to main content
Log in

Clinical use of diodes and micro-chambers to obtain accurate small field output factor measurements

  • Educational Note
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

There have been substantial advances in small field dosimetry techniques and technologies, over the last decade, which have dramatically improved the achievable accuracy of small field dose measurements. This educational note aims to help radiation oncology medical physicists to apply some of these advances in clinical practice. The evaluation of a set of small field output factors (total scatter factors) is used to exemplify a detailed measurement and simulation procedure and as a basis for discussing the possible effects of simplifying that procedure. Field output factors were measured with an unshielded diode and a micro-ionisation chamber, at the centre of a set of square fields defined by a micro-multileaf collimator. Nominal field sizes investigated ranged from 6 × 6 to 98 × 98 mm2. Diode measurements in fields smaller than 30 mm across were corrected using response factors calculated using Monte Carlo simulations of the diode geometry and daisy-chained to match micro-chamber measurements at intermediate field sizes. Diode measurements in fields smaller than 15 mm across were repeated twelve times over three separate measurement sessions, to evaluate the reproducibility of the radiation field size and its correspondence with the nominal field size. The five readings that contributed to each measurement on each day varied by up to 0.26  %, for the “very small” fields smaller than 15 mm, and 0.18 % for the fields larger than 15 mm. The diode response factors calculated for the unshielded diode agreed with previously published results, within uncertainties. The measured dimensions of the very small fields differed by up to 0.3 mm, across the different measurement sessions, contributing an uncertainty of up to 1.2 % to the very small field output factors. The overall uncertainties in the field output factors were 1.8 % for the very small fields and 1.1 % for the fields larger than 15 mm across. Recommended steps for acquiring small field output factor measurements for use in radiotherapy treatment planning system beam configuration data are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Taylor ML, Kron T, Franich RD (2011) A contemporary review of stereotactic radiotherapy: inherent dosimetric complexities and the potential for detriment. Acta Oncol 50(4):483–508

    Article  PubMed  Google Scholar 

  2. Das IJ, Ding GX, Ahnesjö A (2008) Small fields: nonequilibrium radiation dosimetry. Med Phys 35(1):206–215

    Article  PubMed  Google Scholar 

  3. McKerracher C, Thwaites DI (1999) Assessment of new small-field detectors against standard-field detectors for practical stereotactc beam data acquisition. Phys Med Biol 44(9):21432160

    Article  Google Scholar 

  4. Francescon P, Cora S, Satariano N (2011) Calculation of kQclin, Qmsrfclin, fmsr for several small detectors and for two linear accelerators using Monte Carlo simulations. Med Phys 38(12):6513–6527

    Article  CAS  PubMed  Google Scholar 

  5. Cranmer-Sargison G, Weston S, Evans JA, Sidhu NP, Thwaites DI (2011) Implementing a newly proposed Monte Carlo based small field dosimetry formalism for a comprehensive set of diode detectors. Med Phys 38(12):6592–6602

    Article  CAS  PubMed  Google Scholar 

  6. Cranmer-Sargison G, Weston S, Sidhu NP, Thwaites DI (2011) Experimental small field 6MV output ratio analysis for various diode detector and accelerator combinations. Radiother Oncol 100(3):429–435

    Article  PubMed  Google Scholar 

  7. Ralston A, Liu P, Warrener K, McKenzie D, Suchowerska N (2012) Small field diode correction factors derived using an air core fibre optic scintillation dosimeter and EBT2 film. Phys Med Biol 57(9):2587–2602

    Article  PubMed  Google Scholar 

  8. Bassinet C, Huet C, Derreumaux S, Brunet G, Chea M, Baumann M, Lacornerie T, Gaudaire-Josset S, Trompier F, Roch P, Boisserie G, Clairand I (2013) Small fields output factors measurements and correction factors determination for several detectors for a CyberKnife and linear accelerators equipped with microMLC and circular cones. Med Phys 40(7):071725

    Article  CAS  PubMed  Google Scholar 

  9. Cranmer-Sargison G, Charles PH, Trapp JV, Thwaites DI (2013) A methodological approach to reporting corrected small field relative outputs. Radiother Oncol 109(3):350–355

    Article  PubMed  Google Scholar 

  10. Charles PH, Cranmer-Sargison G, Thwaites DI, Crowe SB, Kairn T, Knight RT, Kenny J, Langton CM, Trapp JV (2014) A practical and theoretical definition of very small field size for radiotherapy output factor measurements. Med Phys 41(4):041707

    Article  CAS  PubMed  Google Scholar 

  11. Alfonso R, Andreo P, Capote R, Huq MS, Kilby W, Kjäll P, Mackie TR, Palmans H, Rosser K, Seuntjens J, Ullrich W, Vatnitsky S (2008) A new formalism for reference dosimetry of small and nonstandard fields. Med Phys 35(11):5179–5186

    Article  CAS  PubMed  Google Scholar 

  12. Das IJ, Cheng C-W, Watts RJ, Ahnesjö A, Gibbons J, Li XA, Lowenstein J, Mitra RK, Simon WE, Zhu TC (2008) Accelerator beam data commissioning equipment and procedures: report of the TG- 106 of the Therapy Physics Committee of the AAPM. Med Phys 35(9):4186–4215

    Article  PubMed  Google Scholar 

  13. Cranmer-Sargison G, Weston S, Evans JA, Sidhu NP, Thwaites DI (2012) Monte Carlo modelling of diode detectors for small field MV photon dosimetry: detector model simplification and the sensitivity of correction factors to source parameterization. Phys Med Biol 57(16):5141–5153

    Article  CAS  PubMed  Google Scholar 

  14. Dieterich S, Sherouse GW (2011) Experimental comparison of seven commercial dosimetry diodes for measurement of stereotactic radiosurgery cone factors. Med Phys 38(7):4166–4173

    Article  PubMed  Google Scholar 

  15. Griessbach I, Lapp M, Bohsung J, Gademann G, Harder D (2005) Dosimetric characteristics of a new unshielded silicon diode and its application in clinical photon and electron beams. Med Phys 32(12):3750–3754

    Article  PubMed  Google Scholar 

  16. Scott AJ, Kumar S, Nahum AE, Fenwick JD (2012) Characterizing the influence of detector density on dosimeter response in non-equilibrium small photon fields. Phys Med Biol 57(14):4461–4476

    Article  PubMed  Google Scholar 

  17. Laub WU, Wong T (2003) The volume effect of detectors in the dosimetry of small fields used in IMRT. Med Phys 30(3):341–347

    Article  CAS  PubMed  Google Scholar 

  18. Charles PH, Crowe SB, Kairn T, Knight RT, Hill B, Kenny J, Langton CM, Trapp JV (2013) Monte Carlo-based diode design for correction-less small field dosimetry. Phys Med Biol 58(13):4501–4512

    Article  CAS  PubMed  Google Scholar 

  19. Charles PH, Crowe SB, Kairn T, Kenny J, Lehmann J, Lye J, Dunn L, Hill B, Knight RT, Langton CM, Trapp JV (2012) The effect of very small air gaps on small field dosimetry. Phys Med Biol 57(21):6947–6960

    Article  CAS  PubMed  Google Scholar 

  20. Pappas E, Maris TG, Zacharopoulou F, Papadakis A, Manolopoulos S, Green S, Wojnecki C (2008) Small SRS photon field profile dosimetry performed using a PinPoint air ion chamber, a diamond detector, a novel silicon-diode array (DOSI), and polymer gel dosimetry. Analysis and intercomparison. Med Phys 35(10):4640–4648

    Article  CAS  PubMed  Google Scholar 

  21. Yorke E, Alecu R, Ding L, Fontenla D, Kalend A, Kaurin D, Masterson-McGary M E, Marinello G, Matzen T, Saini A, Shi J, Simon W, Zhu T C, Zhu X R (2005) Diode in vivo dosimetry for patients receiving external beam radiation therapy: Report of Task Group 62 of the Radiation Therapy Committee. American Association of Physicists in Medicine

  22. Zhu XR, Allen JJ, Shi J, Simon WE (2000) Total scatter factors and tissue maximum ratios for small radiosurgery fields: comparison of diode detectors, a parallel-plate ion chamber, and radiographic film. Med Phys 27(3):472–477

    Article  CAS  PubMed  Google Scholar 

  23. Beddar AS, Mason DJ, O’Brien PF (1994) Absorbed dose perturbation caused by diodes for small field photon dosimetry. Med Phys 21(7):1075–1079

    Article  CAS  PubMed  Google Scholar 

  24. Charles PH, Cranmer-Sargison G, Thwaites DI, Kairn T, Crowe SB, Pedrazzini G, Aland T, Kenny J, Langton CM, Trapp JV (2014) Design and experimental testing of air slab caps which convert commercial electron diodes into dual purpose, correction-free diodes for small field dosimetry. Med Phys 41(10):101701

    Article  CAS  PubMed  Google Scholar 

  25. Rogers DWO, Faddegon BA, Ding GX, Ma CM, We J, Mackie TR (1995) BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys 22(5):503–524

    Article  CAS  PubMed  Google Scholar 

  26. Francescon P, Kilby W, Satariano N, Cora S (2012) Monte Carlo simulated correction factors for machine specific reference field dose calibration and output factor measurement using fixed and iris collimators on the CyberKnife system. Phys Med Biol 57(12):3741–3758

    Article  CAS  PubMed  Google Scholar 

  27. Pantelis E, Moutsatsos A, Zourari K, Petrokokkinos L, Sakelliou L, Kilby W, Antypas C, Papagiannis P, Karaiskos P, Georgiou E, Seimenis I (2012) On the output factor measurements of the CyberKnife iris collimator small fields: experimental determination of the kQ clin, Q msr f clin, f msr correction factors for microchamber and diode detectors. Med Phys 39(8):4875–4885

    Article  CAS  PubMed  Google Scholar 

  28. Charles PH, Crowe SB, Kairn T, Knight R, Hill B, Kenny J, Langton CM, Trapp JV (2014) The influence of Monte Carlo source parameters on detector design and dose perturbation in small field dosimetry. J Phys Conf Ser 489:012006

    Article  Google Scholar 

  29. Kawrakow I (2005) egspp: the EGSnrc C++ class library. NRCC Report PIRS-899, National Research Council of Canada

  30. Kawrakow I, Rogers DWO, Walters BRB (2004) Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting. Med Phys 31(10):2883–2898

    Article  CAS  PubMed  Google Scholar 

  31. Kairn T, Kenny J, Crowe SB, Fielding AL, Franich RD, Johnston PN, Knight R, Langton CM, Schlect D, Trapp JV (2010) Technical note: modelling a complex micro-multileaf collimator using the standard BEAMnrc distribution. Med Phys 37(4):1761–1767

    Article  CAS  PubMed  Google Scholar 

  32. Kairn T, Aland T, Franich RD, Johnston PN, Kakakhel MB, Kenny J, Knight R, Langton CM, Schlect D, Taylor ML, Trapp JV (2010) Adapting a generic BEAMnrc model of the BrainLAB m3 micro-multileaf collimator to simulate a local collimation device. Phys Med Biol 55(17):N451–N463

    Article  CAS  PubMed  Google Scholar 

  33. Kairn T, Taylor ML, Crowe SB, Dunn L, Franich RD, Kenny J, Knight RT, Trapp JV (2012) Monte Carlo verification of gel dosimetry measurements for stereotactic radiotherapy. Phys Med Biol 57(11):3359–3369

    Article  CAS  PubMed  Google Scholar 

  34. Brainlab AG (2010) Brainlab Physics Technical Guide, Revision 1.2

  35. ISO. Guide to expression of uncertainty in measurement. Technical Report Guide 98 (International Organization of Standardization, Geneva, 1995)

  36. Hill R (2013) Reporting uncertainties in measurement: what approach should be followed? Australas. Phys Eng Sci Med 36(1):1–3

    Article  PubMed  Google Scholar 

  37. Scott AJ, Nahum AE, Fenwick JD (2009) Monte Carlo modeling of small photon fields: quantifying the impact of focal spot size on source occlusion and output factors, and exploring miniphantom design for small-field measurements. Med Phys 36(7):3132–3144

    Article  PubMed  Google Scholar 

  38. Li S, Rashid A, He S, Djajaputra D (2004) A new approach in dose measurement and error analysis for narrow photon beams (beamlets) shaped by different multileaf collimators using a small detector. Med Phys 31(7):2020–2032

    Article  PubMed  Google Scholar 

  39. Tyler M, Liu PZ, Chan KW, Ralston A, McKenzie DR, Downes S, Suchowerska N (2013) Characterization of small-field stereotactic radiosurgery beams with modern detectors. Phys Med Biol 58(21):7595–7608

    Article  PubMed  Google Scholar 

  40. Liu PZ, Suchowerska N, McKenzie DR (2014) Can small field diode correction factors be applied universally? Radiother Oncol 112(3):442–446

  41. Kairn T, Asena A et al (2015) Field size consistency of nominally matched linacs. Australas. Phys Eng Sci Med (Submitted)

Download references

Acknowledgments

Experimental measurements were obtained with assistance from Greg Pedrazzini, Richard Knight, George Warr and Trent Aland. Information and advice on early aspects of this work were provided by John Kenny. This study was supported by the Australian Research Council, the Wesley Research Institute, Premion and the Queensland University of Technology (QUT), through linkage Grant No. LP110100401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kairn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kairn, T., Charles, P.H., Cranmer-Sargison, G. et al. Clinical use of diodes and micro-chambers to obtain accurate small field output factor measurements. Australas Phys Eng Sci Med 38, 357–367 (2015). https://doi.org/10.1007/s13246-015-0334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0334-9

Keywords

Navigation