Skip to main content
Log in

Surgical Modulation of Pulmonary Artery Shear Stress: A Patient-Specific CFD Analysis of the Norwood Procedure

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purposr

This study created 3D CFD models of the Norwood procedure for hypoplastic left heart syndrome (HLHS) using standard angiography and echocardiogram data to investigate the impact of shunt characteristics on pulmonary artery (PA) hemodynamics. Leveraging routine clinical data offers advantages such as availability and cost-effectiveness without subjecting patients to additional invasive procedures.

Methods

Patient-specific geometries of the intrathoracic arteries of two Norwood patients were generated from biplane cineangiograms. “Virtual surgery” was then performed to simulate the hemodynamics of alternative PA shunt configurations, including shunt type (modified Blalock-Thomas-Taussig shunt (mBTTS) vs. right ventricle-to-pulmonary artery shunt (RVPAS)), shunt diameter, and pulmonary artery anastomosis angle. Left-right pulmonary flow differential, Qp/Qs, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) were evaluated.

Results

There was strong agreement between clinically measured data and CFD model output throughout the patient-specific models. Geometries with a RVPAS tended toward more balanced left-right pulmonary flow, lower Qp/Qs, and greater TAWSS and OSI than models with a mBTTS. For both shunt types, larger shunts resulted in a higher Qp/Qs and higher TAWSS, with minimal effect on OSI. Low TAWSS areas correlated with regions of low flow and changing the PA-shunt anastomosis angle to face toward low TAWSS regions increased TAWSS.

Conclusion

Excellent correlation between clinically measured and CFD model data shows that 3D CFD models of HLHS Norwood can be developed using standard angiography and echocardiographic data. The CFD analysis also revealed consistent changes in PA TAWSS, flow differential, and OSI as a function of shunt characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CFD:

computational fluid dynamics

ESPVR:

end-systolic pressure-volume relationship

HLHS:

hypoplastic left heart syndrome

mBTTS:

modified Blalock-Thomas-Taussig shunt

RVPAS:

right ventricle-to-pulmonary artery shunt

RPA:

right pulmonary artery

LPA:

left pulmonary artery

PA:

pulmonary artery

References

  1. Barron, D. J.; Ramchandani, B.; Murala, J.; Stumper, O.; De Giovanni, J. V.; Jones, T. J.; Stickley, J.; Brawn, W. J. Surgery Following Primary Right Ventricular Outflow Tract Stenting for Fallot’s Tetralogy and Variants: Rehabilitation of Small Pulmonary Arteries. European Journal of cardio-thoracic Surgery 2013, 44 (4), 656–662.

    Article  PubMed  Google Scholar 

  2. Bradley, S. M.; Simsic, J. M.; McQuinn, T. C.; Habib, D. M.; Shirali, G. S.; Atz, A. M. Hemodynamic Status After the Norwood Procedure: A Comparison of Right Ventricle–to–Pulmonary Artery Connection Versus Modified Blalock-Taussig Shunt. The Annals of thoracic surgery 2004, 78 (3), 933–941.

  3. Mair, R.; Tulzer, G.; Sames, E.; Gitter, R.; Lechner, E.; Steiner, J.; Hofer, A.; Geiselseder, G.; Gross, C. Right Ventricular to Pulmonary Artery Conduit Instead of Modified Blalock-Taussig Shunt Improves Postoperative Hemodynamics in Newborns After the Norwood Operation. The Journal of Thoracic and Cardiovascular Surgery 2003, 126 (5), 1378–1384.

    Article  PubMed  Google Scholar 

  4. Pizarro, C.; Malec, E.; Maher, K. O.; Januszewska, K.; Gidding, S. S.; Murdison, K. A.; Baffa, J. M.; Norwood, W. I. Right Ventricle to Pulmonary Artery Conduit Improves Outcome After Stage I Norwood for Hypoplastic Left Heart Syndrome. Circulation 2003, 108 (10_suppl_1), II–155.

    Article  Google Scholar 

  5. Griselli, M.; McGuirk, S. P.; Stümper, O.; Clarke, A. J.; Miller, P.; Dhillon, R.; Wright, J. G.; De Giovanni, J. V.; Barron, D. J.; Brawn, W. J. Influence of Surgical Strategies on Outcome After the Norwood Procedure. The Journal of Thoracic and cardiovascular surgery 2006, 131 (2), 418–426.

    Article  PubMed  Google Scholar 

  6. Pruetz, J. D.; Badran, S.; Dorey, F.; Starnes, V. A.; Lewis, A. B. Differential Branch Pulmonary Artery Growth After the Norwood Procedure with Right Ventricle–Pulmonary Artery Conduit Versus Modified Blalock–Taussig Shunt in Hypoplastic Left Heart Syndrome. The Journal of Thoracic and Cardiovascular Surgery 2009, 137 (6), 1342–1348.

    Article  PubMed  Google Scholar 

  7. Graham, E. M.; Atz, A. M.; Bradley, S. M.; Scheurer, M. A.; Bandisode, V. M.; Laudito, A.; Shirali, G. S. Does a Ventriculotomy Have Deleterious Effects Following Palliation in the Norwood Procedure Using a Shunt Placed from the Right Ventricle to the Pulmonary Arteries? Cardiology in the Young 2007, 17 (2), 145–150.

    Article  PubMed  Google Scholar 

  8. Newburger JW, Sleeper LA, Frommelt PC, et al. Transplantation-free survival and interventions at 3 years in the single ventricle reconstruction trial. Circulation. 2014;129(20):2013–2020. doi:https://doi.org/10.1161/CIRCULATIONAHA.113.006191

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ohye RG, Sleeper LA, Mahony L, et al. Comparison of shunt types in the Norwood procedure for single-ventricle lesions. N Engl J Med. 2010;362(21):1980–1992. doi:https://doi.org/10.1056/NEJMoa0912461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. JW, N.; LA, S.; al., G. J. et. Transplant-Free Survival and Interventions at 6 Years in the SVR Trial. Circulation 2018, 137, 2246–2253.

    Article  Google Scholar 

  11. Kobayashi, Y.; Kotani, Y.; Kuroko, Y.; Kawabata, T.; Sano, S.; Kasahara, S. Norwood Procedure with Right Ventricle to Pulmonary Artery Conduit: A Single-Centre 20-Year Experience. European Journal of Cardio-Thoracic Surgery 2020, 58 (2), 230–236.

    Article  PubMed  Google Scholar 

  12. Rumball, E. M.; McGuirk, S. P.; Stümper, O.; Laker, S. J.; Giovanni, J. V. de; Wright, J. G.; Barron, D. J.; Brawn, W. J. The RV–PA Conduit Stimulates Better Growth of the Pulmonary Arteries in Hypoplastic Left Heart Syndrome. European Journal of cardio-thoracic Surgery 2005, 27 (5), 801–806.

  13. Rhodes, J.; Ubeda-Tikkanen, A.; Clair, M.; Fernandes, S. M.; Graham, D. A.; Milliren, C. E.; Daly, K. P.; Mullen, M. P.; Landzberg, M. J. Effect of Inhaled Iloprost on the Exercise Function of Fontan Patients: A Demonstration of Concept. International Journal of cardiology 2013, 168 (3), 2435–2440.

    Article  PubMed  Google Scholar 

  14. Gerrah, R.; Haller, S. J. Computational Fluid Dynamics: A Primer for Congenital Heart Disease Clinicians. Asian Cardiovascular and Thoracic Annals 2020, 28 (8), 520–532.

    Article  PubMed  Google Scholar 

  15. Bove EL, Migliavacca F, de Leval MR, et al. Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock-Taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2008;136(2):312–320.e2. doi:https://doi.org/10.1016/j.jtcvs.2007.04.078

    Article  PubMed  Google Scholar 

  16. Mroczek T, Małota Z, Wójcik E, Nawrat Z, Skalski J. Norwood with right ventricle-to-pulmonary artery conduit is more effective than Norwood with Blalock-Taussig shunt for hypoplastic left heart syndrome: mathematic modeling of hemodynamics. Eur J Cardiothorac Surg. 2011;40(6):1412–1418. doi:https://doi.org/10.1016/j.ejcts.2011.03.033

    Article  PubMed  Google Scholar 

  17. Moghadam ME, Migliavacca F, Vignon-Clementel IE, Hsia TY, Marsden AL; Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Optimization of shunt placement for the Norwood surgery using multi-domain modeling. J Biomech Eng. 2012;134(5):051002. doi:https://doi.org/10.1115/1.4006814

    Article  PubMed  Google Scholar 

  18. Piskin S, Altin HF, Yildiz O, Bakir I, Pekkan K. Hemodynamics of patient-specific aorta-pulmonary shunt configurations. J Biomech. 2017;50:166–171. doi:https://doi.org/10.1016/j.jbiomech.2016.11.014

    Article  PubMed  Google Scholar 

  19. Chen, S. J.; Carroll, J. D. 3-d Reconstruction of Coronary Arterial Tree to Optimize Angiographic Visualization. IEEE Transactions on medical imaging 2000, 19 (4), 318–336.

    Article  CAS  PubMed  Google Scholar 

  20. Sankaran, S.; Esmaily Moghadam, M.; Kahn, A. M.; Tseng, E. E.; Guccione, J. M.; Marsden, A. L. Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery. Annals of biomedical engineering 2012, 40 (10), 2228–2242.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pirola, S.; Cheng, Z.; Jarral, O.; O’Regan, D.; Pepper, J.; Athanasiou, T.; Xu, X. On the Choice of Outlet Boundary Conditions for Patient-Specific Analysis of Aortic Flow Using Computational Fluid Dynamics. Journal of Biomechanics 2017, 60, 15–21.

    Article  CAS  PubMed  Google Scholar 

  22. Sankaran, S.; Moghadam, M. E.; Kahn, A. M.; Tseng, E. E.; Guccione, J. M.; Marsden, A. L. Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Annals of Biomedical Engineering 2012. https://doi.org/10.1007/s10439-012-0579-3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Primeaux, J.; Salavitabar, A.; Lu, J. C.; Grifka, R. G.; Figueroa, C. A. Characterization of Post-Operative Hemodynamics Following the Norwood Procedure Using Population Data and Multi-Scale Modeling. Frontiers in Physiology 2021, 12, 603040.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Randles, A. P.; Kale, V.; Hammond, J.; Gropp, W.; Kaxiras, E. Performance Analysis of the Lattice Boltzmann Model Beyond Navier-Stokes. In 2013 IEEE 27th international symposium on parallel and distributed processing; IEEE, 2013; pp 1063–1074.

  25. Randles, A.; Draeger, E. W.; Bailey, P. E. Massively Parallel Simulations of Hemodynamics in the Primary Large Arteries of the Human Vasculature. Journal of computational science 2015, 9, 70–75.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Feiger, B.; Vardhan, M.; Gounley, J.; Mortensen, M.; Nair, P.; Chaudhury, R.; Frakes, D.; Randles, A. Suitability of Lattice Boltzmann Inlet and Outlet Boundary Conditions for Simulating Flow in Image-Derived Vasculature. International journal for numerical methods in biomedical engineering 2019, 35 (6), e3198.

  27. Pedley, T. J.; Fung, Y. The Fluid Mechanics of Large Blood Vessels. 1980.

  28. Hsia, T. Y.; Cosentino, D.; Corsini, C.; Pennati, G.; Dubini, G.; Migliavacca, F. Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical norwood palliations for hypoplastic left heart syndrome. Circulation 2011, 124 (11 SUPPL. 1), 204–210. https://doi.org/10.1161/CIRCULATIONAHA.110.010769.

  29. Ohye, R. G.; Sleeper, L. A.; Mahony, L.; Newburger, J. W.; Pearson, G. D.; Lu, M.; Goldberg, C. S.; Tabbutt, S.; Frommelt, P. C.; Ghanayem, N. S.; others. Comparison of Shunt Types in the Norwood Procedure for Single-Ventricle Lesions. New England Journal of Medicine 2010, 362 (21), 1980–1992.

    Article  CAS  PubMed  Google Scholar 

  30. Corsini, C.; Baker, C.; Kung, E.; Schievano, S.; Arbia, G.; Baretta, A.; Biglino, G.; Migliavacca, F.; Dubini, G.; Pennati, G.; others. An Integrated Approach to Patient-Specific Predictive Modeling for Single Ventricle Heart Palliation. Computer methods in biomechanics and biomedical engineering 2014, 17 (14), 1572–1589.

    Article  PubMed  Google Scholar 

  31. Raja, S. G.; Atamanyuk, I.; Tsang, V. T. Impact of Shunt Type on Growth of Pulmonary Arteries After Norwood Stage I Procedure: Current Best Available Evidence. World Journal for Pediatric and Congenital Heart Surgery 2011, 2 (1), 90–96.

    Article  PubMed  Google Scholar 

  32. Tang BT, Pickard SS, Chan FP, Tsao PS, Taylor CA, Feinstein JA. Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: An image-based, computational fluid dynamics study. Pulm Circ. 2012;2(4):470–476. doi:https://doi.org/10.4103/2045-8932.105035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chatzizisis, Y. S.; Jonas, M.; Coskun, A. U.; Beigel, R.; Stone, B. V.; Maynard, C.; Gerrity, R. G.; Daley, W.; Rogers, C.; Edelman, E. R.; Feldman, C. L.; Stone, P. H. Prediction of the localization of high-risk coronary atherosclerotic plaques based on low endothelial shear stress-an intravascular ultrasound and histopathology natural history study. Circulation 2008, 117 (8), 993–1002. https://doi.org/10.1161/CIRCULATIONAHA.107.695254.

    Article  PubMed  Google Scholar 

  34. Ene-Iordache, B.; Remuzzi, A. Blood Flow in Idealized Vascular Access for Hemodialysis: A Review of Computational Studies. Cardiovascular Engineering and Technology 2017, 8 (3), 295–312.

    Article  PubMed  Google Scholar 

  35. Tang, B. T.; Pickard, S. S.; Chan, F. P.; Tsao, P. S.; Taylor, C. A.; Feinstein, J. A. Wall Shear Stress Is Decreased in the Pulmonary Arteries of Patients with Pulmonary Arterial Hypertension: An Image-Based, Computational Fluid Dynamics Study. Pulmonary Circulation 2012, 2 (4), 470–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arnaz A, Pişkin Ş, Oğuz GN, Yalçınbaş Y, Pekkan K, Sarıoğlu T. Effect of modified Blalock-Taussig shunt anastomosis angle and pulmonary artery diameter on pulmonary flow. Anatol J Cardiol. 2018;20(1):2–8. doi:https://doi.org/10.14744/AnatolJCardiol.2018.54810

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yang W, Dong M, Rabinovitch M, Chan FP, Marsden AL, Feinstein JA. Evolution of hemodynamic forces in the pulmonary tree with progressively worsening pulmonary arterial hypertension in pediatric patients. Biomech Model Mechanobiol. 2019;18(3):779–796. doi:https://doi.org/10.1007/s10237-018-011140

  38. Vardhan, M. et al. The importance of side branches in modeling 3D hemodynamics from angiograms for patients with coronary artery disease. Sci Rep 9, 8854 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  39. Vardhan, M. et al. Non-invasive characterization of complex coronary lesions. Sci Rep 11, 8145 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Feiger, B. et al. Suitability of lattice Boltzmann inlet and outlet boundary conditions for simulating flow in image-derived vasculature. Int J Numer Meth Biomed Engng e3198 (2019) doi:https://doi.org/10.1002/cnm.3198.

Download references

Funding

This work was supported by the Duke University Department of Medicine Eugene A. Stead Jr. Scholarship, NIH grants DP5OD019876 and DP1AG082343, the Argonne Leadership Computing Facility Aurora Early Science Program, and the Lawrence Livermore National Laboratory Institutional Computing Grand Challenge program. The content does not necessarily represent the official views of the NIH (National Institutes of Health). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Randles.

Ethics declarations

The authors declare that the research was conducted without any commercial or financial relationships that could be construed as potential conflicts of interest. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Additional information

Communicated by Keefe B. Manning, PhD.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chidyagwai, S.G., Kaplan, M.S., Jensen, C.W. et al. Surgical Modulation of Pulmonary Artery Shear Stress: A Patient-Specific CFD Analysis of the Norwood Procedure. Cardiovasc Eng Tech (2024). https://doi.org/10.1007/s13239-024-00724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13239-024-00724-3

Keywords

Navigation