Skip to main content
Log in

Establishment of a Biaxial Testing System for Characterization of Right Ventricle Viscoelasticity Under Physiological Loadings

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Prior studies have indicated an impact of cardiac muscle viscoelasticity on systolic and diastolic functions. However, the studies of ventricular free wall viscoelasticity, particularly for that of right ventricles (RV), are limited. Moreover, investigations on ventricular passive viscoelasticity have been restricted to large animals and there is a lack of data on rodent species. To fill this knowledge gap, this study aims to develop a biaxial tester that induces high-speed physiological deformations to characterize the passive viscoelasticity of rat RVs.

Methods

The biaxial testing system was fabricated so that planar deformation of rat ventricle tissues at physiological strain rates was possible. The testing system was validated using isotropic polydimethylsiloxane (PDMS) sheets. Next, viscoelastic measurements were performed in healthy rat RV free walls by equibiaxial cyclic sinusoidal loadings and stress relaxation.

Results

The biaxial tester’s consistency, accuracy, and stability was confirmed from the PDMS samples measurements. Moreover, significant viscoelastic alterations of the RV were found between sub-physiological (0.1 Hz) and physiological frequencies (1–8 Hz). From hysteresis loop analysis, we found as the frequency increased, the elasticity and viscosity were increased in both directions. Interestingly, the ratio of storage energy to dissipated energy (Wd/Ws) remained constant at 0.1–5 Hz. We did not observe marked differences in healthy RV viscoelasticity between longitudinal and circumferential directions.

Conclusion

This work provides a new experimental tool to quantify the passive, biaxial viscoelasticity of ventricle free walls in both small and large animals. The dynamic mechanical tests showed frequency-dependent elastic and viscous behaviors of healthy rat RVs. But the ratio of dissipated energy to stored energy was maintained between frequencies. These findings offer novel baseline information on the passive viscoelasticity of healthy RVs in adult rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yancy, C. ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J. Am. Coll. Cardiol. 128(16):1810, 2013.

    Google Scholar 

  2. Virani, S. S., and W. T. Connie. Heart disease and stroke statistics-2020 update: a report from the american heart association. Circulation. 141(9):139, 2020.

    Article  Google Scholar 

  3. Liu, W., and Z. Wang. Current understanding of the biomechanics of ventricular tissues in heart failure. Bioengineering. 7:2, 2020. https://doi.org/10.3390/BIOENGINEERING7010002.

    Article  CAS  Google Scholar 

  4. Kia, D. S., K. Kim, and M. A. Simon. Current understanding of the right ventricle structure and function in pulmonary arterial hypertension. Front. Physiol. 12:641310, 2021.

    Article  Google Scholar 

  5. Caporizzo, M. A., C. Y. Chen, K. Bedi, K. B. Margulies, and B. L. Prosser. Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium. Circulation. 2020. https://doi.org/10.1161/CIRCULATIONAHA.119.043930.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Caporizzo, M. A., C. Y. Chen, A. K. Salomon, K. B. Margulies, and B. L. Prosser. Microtubules provide a viscoelastic resistance to myocyte motion. Biophys. J. 115(9):1796–1807, 2018. https://doi.org/10.1016/j.bpj.2018.09.019.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Cooper, G. Proliferation cardiac microtubules. Heart Circul. Physiol. 297:H510, 2009.

    Article  CAS  Google Scholar 

  8. Cooper, G. Cytoskeletal networks and the regulation of cardiac contractility: microtubules, hypertrophy, and cardiac dysfunction. Heart Circul. Physiol. 291(3):1003–1014, 2006.

    Article  Google Scholar 

  9. Gultekin, O., G. Sommer, and G. A. Holzapfel. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. Comput. Methods Biomech. Biomed. Eng. 19(15):1647–1664, 2016.

    Article  Google Scholar 

  10. Dokos, S., B. H. Smaill, A. A. Young, and I. J. LeGrice. Shear properties of passive ventricular myocardium. Heart Circul. Physiol. 283(6):2650–2659, 2002.

    Article  Google Scholar 

  11. Gerhard, S., et al. Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater. 24:172–192, 2015. https://doi.org/10.1016/J.ACTBIO.2015.06.031.

    Article  Google Scholar 

  12. Ahmad, F., et al. Biomechanical properties and microstructure of neonatal porcine ventricles. J. Mech. Behav. Biomed. Mater. 88:18–28, 2018.

    Article  PubMed  Google Scholar 

  13. Liu, W., M. Nguyen-Truong, M. Ahern, K. M. Labus, C. M. Puttlitz, and Z. Wang. Different passive viscoelastic properties between the left and right ventricles in healthy adult ovine. J. Biomech. Eng. 2021. https://doi.org/10.1115/1.4052004.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Borgdorff, M. A. J., M. G. Dickinson, R. M. F. Berger, and B. Bartelds. Right ventricular failure due to chronic pressure load: What have we learned in animal models since the NIH working group statement? Heart Fail. Rev. 20:475–491, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fatemifar, F., M. D. Feldman, M. Oglesby, and H. C. Han. Comparison of biomechanical properties and microstructure of trabeculae carneae, papillary muscles, and myocardium in human heart. J. Biomech. Eng. 2018. https://doi.org/10.1115/1.4041966.

    Article  PubMed Central  Google Scholar 

  16. Sirry, M. S., et al. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression. J. Mech. Behav. Biomed. Mater. 63:252–264, 2016.

    Article  PubMed  Google Scholar 

  17. Ghaemi, H., K. Behdinan, and A. D. Spence. In vitro technique in estimation of passive mechanical properties of bovine heart: Part I. Experimental techniques and data. Med. Eng. Phys. 31(1):76–82, 2009.

    Article  PubMed  Google Scholar 

  18. Javani, S., M. Gordon, and A. N. Azadani. Biomechanical properties and microstructure of heart chambers: a paired comparison study in an ovine model. Ann. Biomed. Eng. 44(11):3266–3283, 2016. https://doi.org/10.1007/S10439-016-1658-7.

    Article  PubMed  Google Scholar 

  19. Nordsletten, D., et al. A viscoelastic model for human myocardium. Acta Biomater. 135:441–457, 2021.

    Article  CAS  PubMed  Google Scholar 

  20. Anssari-Benam, A., Y.-T. Tseng, G. A. Holzapfel, and A. Bucchi. Rate-dependency of the mechanical behaviour of semilunar heart valves under biaxial deformation. Acta Biomaterilia. 88:120–130, 2019.

    Article  Google Scholar 

  21. Anssari-Benam, A., Y.-T. Tseng, G. A. Holzapfel, and A. Bucchi. Rate-dependent mechanical behaviour of semilunar valves under biaxial deformation: from quasi-static to physiological loading rates. J. Mech. Behav. Biomed. Mater. 104:103645, 2020.

    Article  CAS  PubMed  Google Scholar 

  22. Milani-Nejad, N., and P. M. L. Janssen. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol. Ther. 141(3):235–249, 2014.

    Article  CAS  PubMed  Google Scholar 

  23. Sharp, J., T. Zammit, T. Azar, and D. Lawson. Stress-like responses to common procedures in individually and group-housed female rats. Contemp. Top. Lab Anim. Sci. 42(1):9–18, 2003.

    CAS  PubMed  Google Scholar 

  24. Hill, M. R., M. A. Simon, D. Valdez-Jasso, W. Zhang, H. C. Champion, and M. S. Sacks. Structural and mechanical adaptations of right ventricle free wall myocardium to pressure overload. Ann. Biomed. Eng. 42(12):2451–2465, 2014. https://doi.org/10.1007/s10439-014-1096-3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jang, S., et al. Biomechanical and hemodynamic measures of right ventricular diastolic function: translating tissue biomechanics to clinical relevance. J. Am. Heart. Assoc. 2017. https://doi.org/10.1161/JAHA.117.006084.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Valdez-Jasso, D., M. A. Simon, H. C. Champion, and M. S. Sacks. A murine experimental model for the mechanical behaviour of viable right-ventricular myocardium. J. Physiol. 590:4571, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Avazmohammadi, R., M. Hill, M. Simon, and M. Sacks. Transmural remodeling of right ventricular myocardium in response to pulmonary arterial hypertension. APL Bioeng. 2017. https://doi.org/10.1063/1.5011639.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Labus, K. M., and C. M. Puttlitz. An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural–mechanical relationships. J. Mech. Behav. Biomed. Mater. 62:195–208, 2016.

    Article  PubMed  Google Scholar 

  29. Liu, W., et al. Multiscale contrasts between the right and left ventricle biomechanics in healthy adult sheep and translational implications. Front. Bioeng. Biotechnol. 10:588, 2022. https://doi.org/10.3389/FBIOE.2022.857638/BIBTEX.

    Article  Google Scholar 

  30. Wang, Z., R. S. Lakes, J. C. Eickhoff, and N. C. Chesler. Effects of collagen deposition on passive and active mechanical properties of large pulmonary arteries in hypoxic pulmonary hypertension. Biomech. Model Mechanobiol. 12:1115–1125, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gupta, K. B., M. B. Ratcliffe, M. A. Fallert, L. H. Edmunds Jr., and D. K. Bogen. Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation. 89(5):2314–2326, 1994.

    Article  Google Scholar 

  32. Kim, J. H., P. Chhai, and K. Rhee. Development and characterization of viscoelastic polydimethylsiloxane phantoms for simulating arterial wall motion. Med. Eng. Phys. 91:12–18, 2021.

    Article  PubMed  Google Scholar 

  33. Fung, Y. C., K. Fronek, and P. Patitucci. Pseudoelasticity of arteries and the choice of its mathematical expression. Heart Circ. Physiol. 237(5):620–631, 1979.

    Article  Google Scholar 

  34. Caporizzo, M. A., and B. L. Prosser. Need for speed: the importance of physiological strain rates in determining myocardial stiffness. Front. Physiol. 2021. https://doi.org/10.3389/FPHYS.2021.696694.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu, W., et al. Alterations of biaxial viscoelastic properties of the right ventricle in pulmonary hypertension development in rest and acute stress conditions. Front. Bioeng. Biotechnol. 2023. https://doi.org/10.3389/fbioe.2023.1182703.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu, W., et al. Strain-dependent stress relaxation behavior of healthy right ventricular free wall. Acta Biomater. 152:290–299, 2022. https://doi.org/10.1016/J.ACTBIO.2022.08.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mata, A., A. J. Fleischman, and S. Roy. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdev. 7:281–293, 2005.

    Article  CAS  Google Scholar 

  38. Sales, F. C. P., R. M. Ariati, V. T. Noronha, and J. E. Ribeiro. Mechanical characterization of PDMS with different mixing ratios. Proc. Struct. Integr. 37:383–388, 2022.

    Google Scholar 

  39. Goyal, A., et al. In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films. Macromol. Rapid Commun. 30:1116, 2009.

    Article  CAS  PubMed  Google Scholar 

  40. Johnston, I. D., D. K. McCluskey, C. K. L. Tan, and M. C. Tracey. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24:035017, 2014.

    Article  CAS  ADS  Google Scholar 

  41. Ramo, N. L., K. L. Troyer, and C. M. Puttlitz. Viscoelasticity of spinal cord and meningeal tissues. Acta. Biomaterilia. 75:253–262, 2018.

    Article  Google Scholar 

  42. Campeau, M.-A., et al. Effect of manufacturing and experimental conditions on the mechanical and surface properties of silicone elastomer scaffolds used in endothelial mechanobiological studies. Biomed. Eng. Online. 16:90, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen, A. I., et al. Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties. Int. J. Med. Phys. Res. Pract. 43:3117, 2016.

    Google Scholar 

  44. Lakes, R. “Viscoelastic properties of materials,” Viscoelast. Mater., 2010.

  45. Zacharatos, A., and E. Kontou. Nonlinear viscoelastic modeling of soft polymers. J. Appl. Polym. Sci. 2015. https://doi.org/10.1002/app.42141.

    Article  Google Scholar 

  46. Hadley, D. W., and I. M. Ward. Anisotropic and nonlinear viscoelastic behaviour in solid polymers. Rep. Prog. Phys. 38(10):1143–1215, 1975.

    Article  CAS  ADS  Google Scholar 

  47. Fehervary, H., M. Smoljkic, J. Vander Sloten, and N. Famaey. Planar biaxial testing of soft biological tissue using rakes: a critical analysis of protocol and fitting process. J. Mech. Behav. Biomed. Mater. 61:135–151, 2016.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Katie Evans and Michael Nguyen-Truong for assisting in data collection, and Ethan Barron for helping in tissue bath construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijie Wang.

Ethics declarations

Conflict of interest

Kellan Roth, Wenqiang Liu, Kristen LeBar, Matt Ahern and Zhijie Wang declare that they have no conflict of interest.

Additional information

Associate Editor Sarah Vigmostad, Ph.D. oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, K., Liu, W., LeBar, K. et al. Establishment of a Biaxial Testing System for Characterization of Right Ventricle Viscoelasticity Under Physiological Loadings. Cardiovasc Eng Tech (2024). https://doi.org/10.1007/s13239-024-00722-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13239-024-00722-5

Keywords

Navigation